1 / 29

Statistical Relational Learning

Statistical Relational Learning. Pedro Domingos Dept. Computer Science & Eng. University of Washington. Overview. Motivation Some approaches Markov logic Application: Information extraction Challenges and open problems. Motivation. Most learners only apply to i.i.d. vectors

Audrey
Télécharger la présentation

Statistical Relational Learning

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Statistical Relational Learning Pedro Domingos Dept. Computer Science & Eng. University of Washington

  2. Overview • Motivation • Some approaches • Markov logic • Application: Information extraction • Challenges and open problems

  3. Motivation • Most learners only apply to i.i.d. vectors • But we need to do learning and (uncertain) inference over arbitrary structures:trees, graphs, class hierarchies,relational databases, etc. • All these can be expressed in first-order logic • Let’s add learning and uncertain inference to first-order logic

  4. Some Approaches • Probabilistic logic [Nilsson, 1986] • Statistics and beliefs [Halpern, 1990] • Knowledge-based model construction[Wellman et al., 1992] • Stochastic logic programs [Muggleton, 1996] • Probabilistic relational models [Friedman et al., 1999] • Relational Markov networks [Taskar et al., 2002] • Markov logic[Richardson & Domingos, 2004] • Bayesian logic [Milch et al., 2005] • Etc.

  5. Markov Logic • Logical formulas are hard constraintson the possible states of the world • Let’s make them soft constraints:When a state violates a formula,It becomes less probable, not impossible • Give each formula a weight(Higher weight  Stronger constraint) • More precisely:Consider each grounding of a formula

  6. Example: Friends & Smokers Two constants: Anna (A) and Bob (B) Friends(A,B) Friends(A,A) Smokes(A) Smokes(B) Friends(B,B) Cancer(A) Cancer(B) Friends(B,A)

  7. Markov Logic (Contd.) • Probability of a state x: • Most discrete statistical models are special cases (e.g., Bayes nets, HMMs, etc.) • First-order logic is infinite-weight limit Weight of formula i No. of true groundings of formula i in x

  8. Key Ingredients • Logical inference:Satisfiability testing • Probabilistic inference:Markov chain Monte Carlo • Inductive logic programming:Search with clause refinement operators • Statistical learning:Weight optimization by conjugate gradient

  9. Alchemy • Open-source software available at: • A new kind of programming language • Write formulas, learn weights, do inference • Haven’t we seen this before? • Yes, but without learning and uncertain inference alchemy.cs.washington.edu

  10. Example:Information Extraction Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational Domains”(AAAI-06). Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp. 500-505). Boston, MA: AAAI Press. H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, 2006. P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

  11. Segmentation Author Title Venue Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational Domains”(AAAI-06). Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp. 500-505). Boston, MA: AAAI Press. H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, 2006. P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

  12. Entity Resolution Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational Domains”(AAAI-06). Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp. 500-505). Boston, MA: AAAI Press. H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, 2006. P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

  13. Entity Resolution Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational Domains”(AAAI-06). Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal domains. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (pp. 500-505). Boston, MA: AAAI Press. H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, 2006. P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National Conference on Artificial Intelligence.

  14. State of the Art • Segmentation • HMM (or CRF) to assign each token to a field • Entity resolution • Logistic regression to predict same field/citation • Transitive closure • Alchemy implementation: Seven formulas

  15. Types and Predicates token = {Parag, Singla, and, Pedro, ...} field = {Author, Title, Venue} citation = {C1, C2, ...} position = {0, 1, 2, ...} Token(token, position, citation) InField(position, field, citation) SameField(field, citation, citation) SameCit(citation, citation)

  16. Types and Predicates token = {Parag, Singla, and, Pedro, ...} field = {Author, Title, Venue, ...} citation = {C1, C2, ...} position = {0, 1, 2, ...} Token(token, position, citation) InField(position, field, citation) SameField(field, citation, citation) SameCit(citation, citation) Optional

  17. Types and Predicates token = {Parag, Singla, and, Pedro, ...} field = {Author, Title, Venue} citation = {C1, C2, ...} position = {0, 1, 2, ...} Token(token, position, citation) InField(position, field, citation) SameField(field, citation, citation) SameCit(citation, citation) Input

  18. Types and Predicates token = {Parag, Singla, and, Pedro, ...} field = {Author, Title, Venue} citation = {C1, C2, ...} position = {0, 1, 2, ...} Token(token, position, citation) InField(position, field, citation) SameField(field, citation, citation) SameCit(citation, citation) Output

  19. Formulas Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) <=> InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) <=> SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

  20. Formulas Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) <=> InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) <=> SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

  21. Formulas Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) <=> InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) <=> SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

  22. Formulas Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) <=> InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) <=> SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

  23. Formulas Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) <=> InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) <=> SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

  24. Formulas Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) <=> InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) <=> SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

  25. Formulas Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) <=> InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) <=> SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

  26. Formulas Token(+t,i,c) => InField(i,+f,c) InField(i,+f,c) ^ !Token(“.”,i,c) <=> InField(i+1,+f,c) f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) ^ InField(i’,+f,c’) => SameField(+f,c,c’) SameField(+f,c,c’) <=> SameCit(c,c’) SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

  27. Results: Segmentation on Cora

  28. Results:Matching Venues on Cora

  29. Challenges and Open Problems • Scaling up learning and inference • Model design (aka knowledge engineering) • Generalizing across domain sizes • Continuous distributions • Relational data streams • Relational decision theory • Statistical predicate invention • Experiment design

More Related