1 / 26

EiroFORUM School on Instrumentation, CERN May 26-31, 2013 Thomas Tschentscher

Studying matter under extreme t emperature, pressure, or field conditions using intense, ultrafast x-ray pulses. EiroFORUM School on Instrumentation, CERN May 26-31, 2013 Thomas Tschentscher thomas.tschentscher@xfel.eu. High energy density science  100 J/mm 3

aderyn
Télécharger la présentation

EiroFORUM School on Instrumentation, CERN May 26-31, 2013 Thomas Tschentscher

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Studying matter under extremetemperature, pressure, or field conditionsusing intense, ultrafast x-ray pulses EiroFORUM School on Instrumentation, CERN May 26-31, 2013 Thomas Tschentscher thomas.tschentscher@xfel.eu

  2. High energydensityscience 100 J/mm3 ( 1 Mbar 1015 W/cm2 5106 K  500 T ) More general: Matter under extreme conditionsof temperature, pressure, electricand/ormagneticfieldstrength Dynamic, mostly irreversible processes High EnergyDensityscience

  3. Case 1: Fromsolidsto ideal plasmas • warm dense matter • hotplasmas • solids continuum continuum ??? continuum states band structure • ideal gases • (isolatedparticles) • newtheories ??? • (stronglycoupled) • band theory • (strong correlations) >>1 <<1 1  = couplingparameter = ratioof potential to thermal energy adaptedfrom R. Sheppard

  4. Case 2: Phase diagrams & newphases • pressure - temperature • density - temperature Hydrogen 7700 GPa 16000 K 200 GPa 5300 K accessible by DACs Jupiter, H & He adaptedfrom M. McMahon figurecourtesy R. Redmer • ! equilibrium – steadystateview

  5. High strainratesinfluencedynamics Reactionkinetics Diffusion/propagation Nucleation Case 2 add-on: Dynamics

  6. Study microscopicprocessesduring laser-matter IA  Densityfluctuations  Dynamic & ultrafast processes (electronic, nuclearstructure) Case 3: Relativisticlaser matter interaction

  7. High power laser-driven X-raybacklightersources FEL contributionsto HED research • 1. X-rayphotonenergies • excitedense matter • linear, weakinteraction • isochoricheating • 2. High peakbrilliance • intensity/numberofphotons • single-shotcapability (probing) • plasmagenerationcapability (pumping) • ultrashortpulses • decoupleplasmatransitions • equilibration • Add-on: Repetition rate

  8. X-rayspressurizingmatter Hydrodynamicsimulation (Multi-fs) Th. Schlegel, J. Meyer-ter-Vehn, XFEL Technical Design Report (2001)

  9. r0 • x-rayenergydeposition smooth • isochoricexcitation (pulse durationmuchshorterthanexpansion) • nocompression max. solid density X-rayspressurizing matter

  10. depth (µm) Generation of homogenously heated WDM states Saturated regime Linear regime time (fs) Isochoricenergydeposition • Equilibrationoftheelectron-ionsystem • Creationof well-definedplasmabeforehydrodynamicexpansionstarts X-raygeneratedplasmas

  11. First experimentsusing FELs ~0.8nm, Al, µm, S. Vinko et al., Nature 482, 59 (2012) 13.5 nm, Al, µm, B. Nagler et al., Nature Phys. 5, 693 (2009)

  12. X-ray pump – X-ray probe devices • Splitting x-raypulses & delayingonewithrespecttotheother An instrumentationchallenge Collaborationwith U Münster, AG Zacharias S. Rohlinget al., Proc. SPIE 8504, 850407 (2012)

  13. Make use of extreme brightness • Large flexibility in setups • Couple various pump sources to instrument • High energy/power optical lasers • Pulsed magnetic fields • Pulsed electric fields X-rayprobingof extreme stateof matter

  14. Extendstaticcompressiontechniques (e.g. diamondanvilcells) by laser-drivendynamiccompression (P > 100-400 GPa; T ~1000-4000 K) • shocks • shock-less/isentropictechniques Dynamic compression

  15. Tightrequirementstoopticallaser • ns pulse durations • Temporal shaping • Pulse energies Isentropiccompression D.E. Frantanduono et al., J. Appl. Phys. 110, 073110 (2011)

  16. High energylaserresults Shock compressionofgold (R. Cauble et al., PRL 70, 2102 (1993)) Rampcompressionofdiamond (D.K. Bradley et al., PRL 102, 077502 (2009)) • Measureto 75 TPa • Shock front velocity • Melting (T~106 K) • Measureto 800 GPa • Stress vs. density • Nomelting (T=6200K)

  17. Imaging experimentperformedat LCLS in May 2012 (A. Schropp et al.) • 7.0 & 8.2 keV • Phase-contrastimagingmode • Usingdiverging beam projection • Focalspotsize ~120 nm (mono); beam divergence ~1mrad; f.o.v. ~100 µm X-ray FEL shock front imaging

  18. Integrateopticallasersintoaccelerator/x-rayfacility • Stabilityissues • Repetition rates • Synchronizationandjittermeasurement An instrumentationchallenge European XFEL Experimenthall

  19. Scope & challenges • Burst modeoperationwithupto 1 mJ@1 MHz (1 kW) • Flexible deliverypattern (0.1 – 4. 5 MHz; pulse-on-demand) • Ultrashort, adjustable puls duration (15 – 100 fs) • Extreme synchronizationofseverallasers (<20 fs) Realisation • CPA fibrefrontend • OPCPA mainamplifier • InnoSlab pump laser • Multi-stage NOPA European XFEL OL group • Max Lederer et al. Optical laserdevelopmentat European XFEL

  20. X-ray pulse leadstochangeof OL reflectivity • Convert time-to-space & image • Invasive  non-invasive • Adjust x-rayintensity Measurement of x-ray pulse arrival from M. Beyeet al., APL 100, 121108 (2012)

  21. Measurement of pulse arrival FLASH: GaAs LCLS: Si3N4 LCLS: Si3N4 C. Gahlet al., Nature Phot. 2, 165 (2008) S. Schorbet al., APL 100, 121107 (2012) M. Beyeet al., APL 100, 121108 (2012)

  22. UsestreakingmethodswithTHzradiation • Non-invasive • Scanning/single-shot • Duration / full time information Measurement of pulse duration from I. Grguraset al., Nature Phot. 6, 852(2012)

  23. THz streaking using special undulator 13.5 nm t = 299 fs U. Frühling et al., Nature Phot. 3, 523 (2009) Measurement of pulse duration / profile THz streaking using external lasers • 1.7 keV, t = 5fs I. Grguraset al., Nature Phot. 6, 852 (2012)

  24. Final remarks • HED scientific applications using X-ray FELs will provide a new experimental platform. Experiments at current facilities show this capability. •  • The European XFEL HED instrument will be dedicated to the study of strongly excited matter in general, and HED systems in particular. •  • The European XFEL as an international research infrastructure has started construction. Several challenging and beyond current state-of-the-art instrumentation developments are part of this effort. •  • Early experiments are scheduled for 2016.

  25. European XFEL HED-instrument group • Th. Tschentscher (coordinator) • M. Nakatsutsumi • K. Appel Helmholtz-Beamline, User consortium (UC) • Thomas E. Cowan (coordinator), Hans-Peter Schlen-voigt, Ulrich Schramm, Anna Ferrari • Hanns-Peter Liermann, Sven Toleikis, Jörg Strempfer, Martin v. Zimmermann And more • Rip Collins, LLNL • Justin Wark, U Oxford • Andreas Schropp, Christian Schroer, TU Dresden Acknowledgements

  26. Thank you for your attention • The end

More Related