1 / 12

First tutorial

First tutorial.

albina
Télécharger la présentation

First tutorial

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. First tutorial

  2. 6.8 (Parking Charges) A parking garage charges a $2.00 minimum fee to park for up to three hours. The garage charges an additional $0.50 per hour for each hour or part thereof in excess of three hours. The maximum charge for any given 24-hour period is $10.00. Assume that no car parks for longer than 24 hours at a time. Write an application that calculates and displays the parking charges for each customer who parked in the garage yesterday. You should enter the hours parked for each customer. The program should display the charge for the current customer and should calculate and display the running total of yesterday’s receipts. It should use the method calculateCharges to determine the charge for each customer.

  3. 6.35 (Computer-Assisted Instruction) The use of computers in education is referred to as computer- assisted instruction (CAI). Write a program that will help an elementary school student learnmultiplication. Use a Random object to produce two positive one-digit integers. The program should then prompt the user with a question, such as How much is 6 times 7? The student then inputs the answer. Next, the program checks the student’s answer. If it’s correct, display the message "Very good!" and ask another multiplication question. If the answer is wrong, display the message "No. Please try again." and let the student try the same question repeatedly until the student finally gets it right. A separate method should be used to generate each new question. This method should be called once when the application begins execution and each time the user answers the question correctly.

  4. 6.36 (Computer-Assisted Instruction: Reducing Student Fatigue) One problem in CAI environments is student fatigue. This can be reduced by varying the computer’s responses to hold the student’s attention. Modify the program of Exercise 6.35 so that various comments are displayed for each answer as follows: Possible responses to a correct answer: • Very good! • Excellent! • Nice work! • Keep up the good work! Possible responses to an incorrect answer: • No. Please try again. • Wrong. Try once more. • Don't give up! • No. Keep trying. Use random-number generation to choose a number from 1 to 4 that will be used to select one of the four appropriate responses to each correct or incorrect answer. Use a switch statement to issue the responses.

  5. Assignment 6.37 (Computer-Assisted Instruction: Monitoring Student Performance) More sophisticated computer-assisted instruction systems monitor the student’s performance over a period of time. The decision to begin a new topic is often based on the student’s success with previous topics. Modify the program of Exercise 6.36 to count the number of correct and incorrect responses typed by the student. After the student types 10 answers, your program should calculate the percentage that are correct. If the percentage is lower than 75%, display "Please ask your teacher for extra help.", then reset the program so another student can try it. If the percentage is 75% or higher, display "Congratulations, you are ready to go to the next level!", then reset the program so another student can try it.

  6. 6.38 (Computer-Assisted Instruction: Difficulty Levels) Exercise 6.35 through Exercise 6.37 developed a computer-assisted instruction program to help teach an elementary school student multiplication. Modify the program to allow the user to enter a difficulty level. At a difficulty level of 1, the program should use only single-digit numbers in the problems; at a difficulty level of 2, numbers as large as two digits, and so on.

  7. 6.39 (Computer-Assisted Instruction: Varying the Types of Problems) Modify the program of Exercise 6.38 to allow the user to pick a type of arithmetic problem to study. An option of 1 means addition problems only, 2 means subtraction problems only, 3 means multiplication problems only, 4 means division problems only and 5 means a random mixture of all these types.

  8. 7.10 (Sales Commissions) Use a one-dimensional array to solve the following problem: A company pays its salespeople on a commission basis. The salespeople receive $200 per week plus 9% of their gross sales for that week. For example, a salesperson who grosses $5000 in sales in a week receives $200 plus 9% of $5000, or a total of $650. Write an application (using an array of counters) that determines how many of the salespeople earned salaries in each of the following ranges (assume that each salesperson’s salary is truncated to an integer amount): a) $200–299 b) $300–399 c) $400–499 d) $500–599 e) $600–699 f) $700–799 g) $800–899 h) $900–999 i) $1000 and over Summarize the results in tabular format.

  9. 7.12 (Duplicate Elimination) Use a one-dimensional array to solve the following problem: Write an application that inputs five numbers, each between 10 and 100, inclusive. As each number is read, display it only if it’s not a duplicate of a number already read. Provide for the “worst case,” in which all five numbers are different. Use the smallest possible array to solve this problem. Display the complete set of unique values input after the user enters each new value.

  10. 7.19 (Airline Reservations System) A small airline has just purchased a computer for its new automated reservations system. You’ve been asked to develop the new system. You’re to write an application to assign seats on each flight of the airline’s only plane (capacity: 10 seats). Your application should display the following alternatives: Please type 1 for First Class and Please type 2 for Economy. If the user types 1, your application should assign a seat in the first class section (seats 1–5). If the user types 2, your application should assign a seat in the economy section (seats 6–10). Your application should then display a boarding pass indicating the person’s seat number and whether it’s in the first-class or economy section of the plane. Use a one-dimensional array of primitive type boolean to represent the seating chart of the plane. Initialize all the elements of the array to false to indicate that all the seats are empty. As each seat is assigned, set the corresponding element of the array to true to indicate that the seat is no longer available. Your application should never assign a seat that has already been assigned. When the economy section is full, your application should ask the person if it’s acceptable to be placed in the first-class section (and vice versa). If yes, make the appropriate seat assignment. If no, display the message "Next flight leaves in 3 hours.“ (Use nested if else )

  11. 7.27 (Sieve of Eratosthenes) A prime number is any integer greater than 1 that’s evenly divisible only by itself and 1. The Sieve of Eratosthenes is a method of finding prime numbers. It operates as follows: a) Create a primitive-type boolean array with all elements initialized to true. Array elements with prime indices will remain true. All other array elements will eventually be set to false. b) Starting with array index 2, determine whether a given element is true. If so, loop through the remainder of the array and set to false every element whose index is a multiple of the index for the element with value true. Then continue the process with the next element with value true. For array index 2, all elements beyond element 2 in the array that have indices which are multiples of 2 (indices 4, 6, 8, 10, etc.) will be set to false; for array index 3, all elements beyond element 3 in the array that have indices which are multiples of 3 (indices 6, 9, 12, 15, etc.) will be set to false; and so on. When this process completes, the array elements that are still true indicate that the index is a prime number. These indices can be displayed. Write an application that uses an array of 1000 elements to determine and display the prime numbers between 2 and 999. Ignore array elements 0 and 1.

  12. Assignment 7.35 and 7.36

More Related