1 / 63

LA SYNTHÈSE DES PROTÉINES

LA SYNTHÈSE DES PROTÉINES. La transcription. Information : dans le noyau (sous forme d'ADN) Synthèse des protéines : dans le cytoplasme (au niveau des ribosomes du reticulum endoplasmique). L'ADN ne sort pas du noyau. L'information passe au cytoplasme sous forme d'une copie : l'ARNm.

aldan
Télécharger la présentation

LA SYNTHÈSE DES PROTÉINES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LA SYNTHÈSE DES PROTÉINES

  2. La transcription Information : dans le noyau (sous forme d'ADN) Synthèse des protéines : dans le cytoplasme (au niveau des ribosomes du reticulum endoplasmique) L'ADN ne sort pas du noyau. L'information passe au cytoplasme sous forme d'une copie : l'ARNm. ARN = Acide RiboNucléique

  3. ARN diffère de l'ADN: Sucre des nucléotides = ribose et non désoxyribose comme dans l’ADN d’où le nom ARN, acide ribonucléique. Ribose Désoxyribose

  4. Certains segments de l’ARN peuvent s’apparier s’ils sont complémentaires • La base azotée thymine (T) remplacée par Uracyl (U) (U peut s'apparier à A) • Une seule chaîne de nucléotides • Molécules plus courtes et plus instables que l'ADN

  5. Première étape de la synthèse d'une protéine = copie du gène (ADN) en une molécule d'ARN = transcription Ribonucléotides libres

  6. 3’ 5’ 3’ 5’ 5’ 3’ L'ARNm se détache et la molécule d'ADN se referme 3’ 5’ 5’ 3’ Copie du gène en ARN = ARNm (ARN messager)

  7. Synthèse de l'ARNm se fait par l'enzyme ARN polymérase L’enzyme assemble le brin d’ARN dans la direction 5’ – 3’ (comme l’ADN polymérase) Vitesse de la synthèse ~ 60 nucléotides / s

  8. ARN polymérase se fixe à l’ADN au niveau d’une courte séquence d'ADN placée juste avant le début du gène = promoteur Le promoteur indique: • Le début du gène à transcrire en ARNm (où l’ARN polymérase doit se fixer sur l’ADN) • Quel brin d’ADN doit être transcrit

  9. La traduction La synthèse de la protéine (assemblage des acides aminés) se fait au niveau des ribosomes

  10. Formés de deux sous-unités: une petite et une grande Les ribosomes Plus petites structures cellulaires : visibles au microscope électronique seulement.

  11. Cellule Noyau Nucléole Chaque unité formée d'un mélange d'ARN (= ARNr) et de protéines (~ 60% ARNr et 40% protéines). Les sous-unités des ribosomes sont synthétisées dans le ou les nucléole(s) du noyau (les nucléoles sont des points plus sombres visibles au microscope dans le noyau) .

  12. 30S 50 S ARNr en brun; protéines en bleu

  13. ARNr synthétisé comme l'ARNm à partir de gènes spéciaux (ADN). Ces gènes existent en des centaines de copies dans le génome. Donc, certains gènes ne codent pas pour des protéines. C’est le cas de ces gènes qui servent à produire les ARNr

  14. Pour synthétiser la protéine, il faut: • ARNm = information (la recette) • Ribosome = machine à assembler les acides aminés • Acides aminés = pièces de construction • ARNt (ARN de transfert) = molécules qui transportent les acides aminés du cytoplasme au ribosome où ils sont assemblés en protéine.

  15. L'ARN de transfert (ARNt) ARNt = brin d'ARN qui se replie sur lui-même pour former une structure en 3D

  16. Deux zones importantes sur l'ARNt : Extrémité 3' (se termine par CCA) : peut se lier à un acide aminé Anticodon = zone formée de trois nucléotides pouvant se lier à l'ARNm

  17. Chaque ARNt est caractérisé par son anticodon. Un ARNt ne transporte pas n'importe quel acide aminé: ça dépend de l'anticodon Ex. ARNt AAA transporte toujours l'acide aminé PHE ARNt GAU transporte toujours l'acide aminé LEU L'acide aminé est attaché au bon ARNt par l'enzyme aminoacyl-ARNt synthétase

  18. Le site actif de l’enzyme reconnaît: un acide aminé particulierET un anticodon particulier. Il existe plusieurs sortes d’aminoacyl-ARNt synthétase. Chacune peut attacher un acide aminé particulier à un ARNt particulier. L’enzyme unit l’acide aminé à l’ARNt

  19. Chaque ARNt est synthétisé comme l'ARNm à partir de gènes spéciaux de l'ADN (encore des gènes qui ne codent pas pour des protéines)

  20. N.B. • Un gène peut coder pour la synthèse d'une protéine • Un gène peut coder pour la synthèse d'un ARNr ou ARNt (ces gènes existent en des milliers de copies dans le génome) DONC, gène = brin d'ADN qui est copié en ARN

  21. Mécanisme de la traduction Le brin d'ARNm s'attache au ribosome. En fait, il s’attache d’abord à la petite unité. C’est à ce moment que la grosse unité vient se fixer. Donc, les deux unités ne s’assemblent que lorsque l’ARNm se fixe à la petite unité. Deux ARNt peuvent se fixer par leur anticodon sur l’ARNr au niveau du ribosome (un sur la zone appelée site P et l’autre sur la zone appelée site A).

  22. L’ARNt à l’anticodon UAC se fixe sur le codon AUG. L’anticodon UGC se fixe sur le codon ACG Liaison codon-anticodon de deux ARNt (il y a deux sites de liaison sur le ribosome). Chaque ARNt se fixe par son anticodon sur trois nucléotides de l’ARNm. Ces trois nucléotides de l’ARNm constituent ce qu’on appelle un codon.

  23. Un autre ARNt se met en place Le ribosome avance de trois unités Le premier ARNt est retiré.

  24. Vitesse de la synthèse: • Chez E. coli ~ 5 AA / s • Chez eucaryotes ~ 16 AA / s Tous les ARNm se terminent par le codon (triplet de bases) UAA, UAG ou UGA = codons STOP. Lorsque le ribosome atteint un codon STOP, une enzyme (facteur de terminaison) s'y fixe et détache l'ARNm du ribosome. ==> le ribosome se sépare en deux Les deux unités se réuniront à nouveau si un ARNm se fixe à la petite unité.

  25. Polypeptide ARNm Ribosome

  26. La protéine synthétisée pénètre dans le reticulum endoplasmique où elle prendra sa forme finale.

  27. Chaque triplet de nucléotides sur l'ADN correspond à un codon de l'ARNm. Chaque codon de l'ARNm correspond à un anti-codon spécifique de l'ARNt. Chaque anti-codon correspond à un acide aminé spécifique. DONC: chaque triplet de nucléotides sur l'ADN correspond à un acide aminé.

  28. La vitesse de synthèse peut être augmentée: Plusieurs copies d'ARNm sont synthétisées à partir du gène. Un même ARNm peut se fixer à plusieurs ribosomes à la fois = polyribosome ARNm peut s'accumuler dans la cellule sous forme inactive

  29. Par convention, le code génétique est toujours représenté en faisant correspondre les codons de l’ARNm aux acides aminés auxquels ils correspondent. Le codon AUG (code pour MET) = codon d'initiation. Tous les gènes commencent par ce codon. La MET est souvent enlevée à la fin de la synthèse. Le code génétique

  30. Le code génétique est UNIVERSEL : c'est le même pour tous les êtres vivants. Si on introduit ce brin d’ADN dans n’importe quelle cellule de n’importe quel être vivant, si la cellule l’utilise, elle fabriquera la protéine :PHÉ – ARG – LEU – PHÉ – LEU

  31. Il y a quand même quelques exceptions à l’universalité du code génétique. Chez certains organismes (certaines espèces de protozoaires et certaines espèces de champignons unicellulaires), certains codons peuvent coder pour un acide aminé différent. Voir : Exceptions du code

  32. L’universalité de code génétique alors permet le transfert de gènes d'une espèce à l'autre = génie génétique On peut introduire dans une cellule d’une espèce donnée un gène provenant d’une cellule d’une autre espèce. La cellule ayant reçu le gène de l’autre espèce synthétisera alors la protéine codée par ce gène étranger. • Introduction de gènes dans une bactérie • Introduction de gènes dans un organisme pluricellulaire

  33. Ex. production d'insuline humaine par une bactérie : On prélève le gène de l'insuline humaine et on l'introduit dans le plasmide d'une bactérie.

  34. On extrait les plasmides de bactéries Une enzyme de restriction ouvre les plasmides On extrait ou on synthétise le gène à greffer et on le multiplie en de nombreux exemplaires. On mélange des copies du gène et des plasmides. Une enzyme (ligase) fusionne les brins d'ADN Les plasmides sont réintroduits dans des bactéries Le gène est reproduit quand la bactérie se reproduit

  35. Exemples: bactéries qui synthétisent: Insuline Facteurs de coagulation Hormone de croissance Enzymes pouvant métaboliser certains polluants (pétrole par exemple) Protéines synthétiques qui n'existent pas dans la nature ETC.

  36. On peut aussi modifier les êtres pluricellulaires: Végétaux: Le gène est introduit dans une cellule méristématique (cellules indifférenciées). Cette cellule est multipliée en éprouvette pour former un nouvel individu (cloning). Animaux: Le gène est introduit dans un ovule fécondé ou une cellule embryonnaire. L'ovule est implanté dans l'utérus d'une mère porteuse.

  37. Plantes résistantes aux insectes. Résistantes aux herbicides. Fruits et légumes qui se conservent plus longtemps. Nouvelles saveurs. Plantes plus riches en certains éléments nutritifs (vitamines par exemple). ETC. Riz possédant des gènes lui permettant de synthétiser du bêta carotène, le précurseur de la vitamine A

  38. Animaux à croissance plus rapide. Animaux plus faibles en gras. Animaux plus productifs (en lait, en viande, en œufs). Production de protéines à usage pharmaceutique (insuline, par exemple). ETC. Ces saumons ont le même âge. Celui du bas est un OGM DANGERS ????? Pour la santé? Pour l'environnement ?

  39. Thérapie génique: corriger les gènes défectueux en introduisant dans les cellules le gène normal. Problème : comment introduire le gène dans chacune des cellules à corriger???

  40. Toute cellule provient de la reproduction d’une autre cellule. Ainsi, tout organisme pluricellulaire provient de la reproduction d’une première cellule : l’ovule fécondé. Puisque l’ADN est copié à chaque reproduction de la cellule, toutes les cellules d’un même organisme possèdent le même ADN, celui qui était présent dans l’ovule de départ. DONC, puisque chaque cellule possède le même ADN que celui qui était dans l’ovule de départ, théoriquement, on pourrait produire un individu complet à partir de n’importe quelle de ses cellules. C’est le CLÔNING.

  41. Le cloning On extrait une cellule ordinaire de la brebis A. B A On extrait un ovule de la brebis B. Le noyau de l'ovule est détruit et remplacé par le noyau de la cellule de la brebis A. L'ovule avec son nouveau noyau est implanté dans une brebis C. C Qui donne alors naissance à un jumeau identique (clone) de A. Clone de A

  42. Dolly 1997-2003 N.B. Il a fallu dans le cas de Dolly 276 essais avant de réussir.

  43. Peut-être un jour ???

  44. Les mutations • Mutation = modification de l'information génétique (ADN) • Une mutation peut être: • Chromosomique = altération d'un chromosome complet • Ponctuelle = anomalie dans la séquence des nucléotides

  45. Cause des mutations: Erreur lors de la séparation des chromosomes (mutations chromosomiques) à la division cellulaire Erreur de réplication (erreur de copie non réparée) Erreur causée par une altération de l'ADN par des agents extérieurs = agents mutagènes • Causes physiques : radiations (UV, X, gamma) • Causes chimiques : molécules agissant sur l'ADN

  46. Types de mutations • Substitutions (Remplacement) • Délétions • Insertions • Inversions Substitution Une paire de nucléotides remplacée par une autre. Peut n'avoir aucun effet = mutation silencieuse Ex. CCG (Gly) changé par CCA (Gly aussi)

  47. Ex. la chaîne ß de l'hémoglobine 145 AA) Anémie falciforme = maladie génétique caractérisée par une hémoglobine anormale. Anomalie dans la chaîne ß de l'hémoglobine : 6e acide aminé = VAL alors qu'il devrait être GLU

  48. Peut entraîner la modification d'un acide aminé de la protéine. • Parfois peu ou pas d'effet. • Parfois diminue ou supprime l'efficacité de la protéine. Dans certains cas un codon devient un codon STOP Ex. AAG devient UAG (STOP) ==> arrêt de la synthèse avant la fin = mutationnon sens

  49. Ex. A A T A C G G G C T A C G T C délétion devient Tous les acides aminés suivant la délétion sont changés A A A C G G G C T A C G T C Délétions ou insertions = addition ou délétion d'une ou plusieurs paires de bases. Effet désastreux: tous les acides aminés sont changés SAUF si la modification fait intervenir un multiple de trois nucléotides. = mutation décalage du cadre de lecture (frame shift)

More Related