1 / 23

Coulomb excitation at intermediate energies

Instituto de Estructura de la Materia – Consejo Superior de Investigaciones Científicas. Coulomb excitation at intermediate energies. Andrea Jungclaus. Instituto de Estructura de la Materia, CSIC

amish
Télécharger la présentation

Coulomb excitation at intermediate energies

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Instituto de Estructura de la Materia – Consejo Superior de Investigaciones Científicas Coulomb excitation at intermediateenergies Andrea Jungclaus Instituto de Estructura de la Materia, CSIC Madrid - Spain Au target Coulomb total nuclear

  2. Coulomb excitation Winther & Alder Nucl. Phys. A 319, 518 (1979) Alder & Winther ElectromagneticExcitation North-Holland, 1975 courtesyKathrinWimmer

  3. Coulomb excitation Toeliminate nuclear excitations: Choosebeamenergy in the "safe" regime(<5 MeV/u): Low-energy Coulomb excitationusedwithradioactivebeams at REX-ISOLDE, ISAC-II and SPIRAL Restrictthescatteringangleorequivalent theminimumimpactparameter: "touchingspheres + 2 fm" Interactionisthenassumedto be purelyelectromagnetic !

  4. Measurement ofscattering angle RIKEN 2 PPACs in front of and 1 PPAC behindthe target TPC and target DSSD in front ofand wallDSSD of LYCCA behindthe target PreSPEC

  5. Typical angular resolutions V.M. Bader et al. Phys. Rev C88, 051301(R) 136Te @ 165 MeV/u on 950 mg/cm2Au RIKEN 102Cd @ 73MeV/u 184 mg/cm2 Au s=4.8 mrad sstr= 9.1mrad s=5.4 mrad NSCL s=8.8 mrad sstr= 8.1 mrad 46Ti @ 178 MeV/u 500 mg/cm2 Au PreSPEC V. Vaquero et al., Phys. Rev. C 99, 034306 (2019) sstr=5.9mrad s2= s2meas + s2str s=1.8 mrad Allmeasured angular resolutions are quite similar, but ... A. Boso, PhD thesis

  6. Angular resolution versus "safe" angle At beamenergiesaround 150 MeV/u (RIKEN,GSI) and maximumscattering anglesaround 1.0-1.2º (17-21 mrad): Theapplication of anangularcutisnot reasonable! 136Te @ 139 MeV/u Qmax= 1.2º mid-target touchingspheres + 2 fm 88Kr @ 58.5 MeV/u Qmax= 3.2º mid-target At lowerbeamenergies (MSU) and larger maximumscatteringangles: Asafecutmaybe applied, but at thecost of loosingstatistics ! At energiesaround 150 MeV/u nuclear excitationshaveto be takenintoaccount !

  7. Angular resolution versus "safe" angle At beamenergiesaround 150 MeV/u (RIKEN,GSI) and maximumscattering anglesaround 1.0-1.2º (17-21 mrad): Theapplication of anangularcutisnot reasonable! 136Te @ 139 MeV/u Qmax= 1.2º mid-target touchingspheres + 2 fm 88Kr @ 58.5 MeV/u Qmax= 3.2º mid-target At lowerbeamenergies (MSU) and larger maximumscatteringangles: Asafecutmaybe applied, but at thecost of loosingstatistics ! B. Elman et al., Phys. Rev C 96, 044332 (2017) At energiesaround 150 MeV/u nuclear excitationshaveto be takenintoaccount !

  8. Coupledchannelsdistortedwavecalculations Requiredinput for FRESCO or ECIS: - opticalpotential (parameterizedormicroscopic) - nuclear deformationlengthdn - electromagnetcmatrixelement M(pl) I.J. Thompson, Comp. Phys. Rep. 7, 3 (1988); http://fresco.org.uk (versionmodifiedby A. Moro) 72Kr @ 164 MeV/u onAu Strongabsorptionautomatically takenintoaccount. Coulomb Interferencebetween Coulomb and nuclear excitations. total Angular cutisnevera really goodchoice! nuclear

  9. Coupledchannelsdistortedwavecalculations 46Ti @ 171 MeV/u onAu qmax dn=dc calculationfolded withs =7 mrad Coulomb total qmax nuclear scoul= 140mb snucl = 64 mb stotal = 160 mb

  10. Warningsconcerningothercodes DWEIKO: - uses straight-line approximation of Alder-Winthertheory C.A. Bertulani et al., Comp. Phys. Com. 152, 317 (2003) C.A. Bertulani, Comp. Phys. Com. 152, 317 (2003) FRESCO DWEIKO Wrongdescription of interference and absorption ! ECIS: - coupledchannelsusingstandardAlder-Winthertheory - Convergenceissueswhenusedfor heavy beams (seemtodepend onthetotal energy of thereaction, ok for light beams) J. Raynal

  11. A Coulexanalysisstepbystep: The caseof136Te Z Z ZeroDegree BigRIPS A/q A/q

  12. A Coulexanalysisstepbystep: The caseof136Te 1) Determine differentialcrosssectionson light and heavy targets. Sortspectrafordifferentscatteringanglebins and determine intensities: Au Au C C Correctfor ZD transmission and reactionlosses ! V. Vaquero et al., Phys. Rev. C 99, 034306 (2019)

  13. Transmission andreactionlosses Effective ZD transmission LYCCA wall DSSD 1o includesreactionlosses Efficiency as function of qlab ? Reactionlosses ?

  14. Reactionlosses in beam detectorsandtarget PreSPEC 2+ 0+ 52Fe on 400 mg/cm2 Au Dopplercorrectionassuming emissionfromtarget, startToF and target DSSSD, respectively. 52Fe Thereis a lot of material in the beam line, notonlythe target !

  15. A Coulexanalysisstepbystep: The caseof136Te 2) Determine total crosssectionson light and heavy targets. 136Te52+ Au C 136Te51+ sCtot= 23(3) mb FRESCO sAutot= 279(22) mb dn = 1.05(7) fm ZD transmission and reactionlosses

  16. A Coulexanalysisstepbystep: The caseof136Te 3) Compare foldedtheoretical curve with experimental distribution (C target). dn = 1.05(7) fm C target calculation calculationafterfolding withexp. resolution 4) CorrectsAutotforunobservedfeeding(in the case of the 2+ in 136Te 15(5)%). 5) In FRESCO adjustM(pl) to reproduce thecorrectedsAutotusingthevalue of dndeterminedabovewiththe C target.

  17. Makesurethatthefoldingiscorrectlydone ... 1D: ds(qlab) smearedwithGaussians 2D: Couplingbetweenscattering and stragglingvectors (thetwof are independent !).

  18. A Coulexanalysisstepbystep: The caseof136Te 6) Compare foldedtheoretical curve with experimental distribution (Au target). calculation Au target Coulomb calculationafterfolding Not a fitto data ! total nuclear scoul= 224 mb Onlyweakdependenceondndue tothedestructiveinterference ! snucl= 44 mb stotal= 219 mb

  19. A Coulexanalysisstepbystep: The caseof136Te 7) Evaluation of uncertainties. errorsontransmission, #gamma fromfit, number of ions, target thickness, downscale factor Purelystatistical error<1% ! B(E2)=0.191(26) e2b2 13.6% error Difficultto determine B(E2) withhigherprecision !

  20. Last comment: Can isomericstatescauseproblems ? Twodifferentsources of 2+ 0+grays: Eg T1/2 6+ • Decay of 2+statefollowinginelasticexcitation. 4+ • Decay of 2+populated in theisomericdecay. 2+ isomeric decays inelastic excitation b~0.5 v = 15 cm/ns 0+ Isomericdecayscontinuouslyduringtheflightthrough DALI Contamination of the 2-0 lineshape ! Quantitiestotakeintoaccountin theestimation of theeffect: • isomerhalf-life • isomeric ratio • energy of isomerictransition • inelasticexcitationcrosssection In most cases not a problem, butmakesure !

  21. Summary: CoulexanalysisandnewCoulexproposals Analysisprocedurefor Coulomb excitationexperiments at beamenergies around 150 MeV/u revised and checkedwithhigh-statistics data on136Te. V. Vaquero et al., Phys. Rev. C 99, 034306 (2019) Correct and wronganalysismay lead to similar resultsduetocancellation of effects. Doesthisjustifyto do itwrongly? Approachcan/shouldbe usedforcountrateestimatesforfutureproposals. Difficult (impossible ?) to determine B(E2) valueswithuncertainties below 15%. Makesurethatthisissufficienttoanswerthephysics questionyouwouldliketotackle (i.e. todistinguishbetweendifferent theoreticalpredictions). Makesurethat in the case of interestisomericdecays do notaffect theanalysis. ThankstoVictor, Kathrin and Pieter !

  22. FRESCO versus DWEIKO J. Barrette et al., Phys. Lett. B 209, 182 (1988)

  23. The resultfor136Te

More Related