1 / 32

5.4 Lighting applications

Chapter 5 Selected applications. 5.4 Lighting applications. CRI / %. 80. 60. 40. Tb III. 20. Eu III. (Eu II ). 0. -20. 400. 500. 600 nm. 400. 500. 600 nm. Chapter 5 Selected applications. Producing white light: trichromatic stimuli.

Télécharger la présentation

5.4 Lighting applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 5 Selected applications 5.4 Lighting applications MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  2. CRI / % 80 60 40 TbIII 20 EuIII (EuII) 0 -20 400 500 600 nm 400 500 600 nm Chapter 5 Selected applications Producing white light: trichromatic stimuli There are three “prime”colors corresponding to thethree spectral responses ofhuman vision Color rendering index obtainedby mixing the three prime colors MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  3. y Emission Reflectance Trichromatic stimuli x Chapter 5 Selected applications Trichromatic diagram MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  4. Chapter 5 Selected applications W filament Hg DV e- UV (254 nm) Filling gas: Ar Coating UV photons excite phosphor-containing coating leading to a white emission thanks to an appropriate blend of phosphors (Courtesy of P. Ceintrey, Rhodia Electronics & Catalysis) MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  5. Chapter 5 Selected applications Major phosphors used by lighting industry MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  6. Hg 254 nm l /nm 230 280 330 380 430 480 530 580 630 680 730 Chapter 5 Selected applications Y2O3:Eu3+ 5D0→7F1 LMCT Absorption spectrum Emission spectrum f-f transitions Y2O3 features metal ion sites with Oh symmetry, e.d. transitionsare therefore forbidden MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  7. Hg 254 nm 240 290 340 390 440 490 540 590 640 690 l (nm) Chapter 5 Selected applications LaPO4 : Ce,Tb 4f-5d transition Emission spectrum Absorption spectrum Ce3+→Tb3+ transfer MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  8. 8 6 Volume (%) 4 2 0 0.01 0.1 1 10 100 Particle diameter /µm Chapter 5 Selected applications Synthesis Main difficulty is to reach adequate particle size Example: red phosphor 2.68 mm 2 mm (Courtesy of P. Ceintrey, Rhodia Electronics & Catalysis) MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  9. 10 mm 3 mm Chapter 5 Selected applications Green phosphor is obtained by co-precipitationleading to incorporation of Ce3+ and Tb3+ in theLaPO4 lattice; allows control of morphology, particle sizeand oxidation state of Ce and Tb. Precursor After flux addition (Courtesy of P. Ceintrey, Rhodia Electronics & Catalysis) MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  10. Hg 254 nm 200 300 400 500 600 nm Chapter 5 Selected applications Blue phosphor Sr4Al4O25:EuII Emission (d-f transition) excitation MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  11. 80 P /mW·nm-1·lm-1 60 40 20 0 400 500 600 700 Chapter 5 Selected applications Spectral distributionof a luminescent lampwith the followingphosphors: BaMg2Al16O27:EuII CeMgAl11O19:TbIII Y2O3:EuIII J.M.P.J. Verstegen et al., J. Electrochem. Soc.1974, 121, 1627 MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  12. Hg Energy saving Chapter 5 Selected applications The future of lighting Incandescent lamp Light Emitting Diodes Fluorescent lamp 1970 1995 * Heat loss: 100 W gives only 18 W for lighting * Elimination of heat loss but * 55% of energy is lost during conversion of UV excitation into visible photons * 35% of energy is lost during conversion of UV excitation into visible photons 18 % 60-70 % 25-30 % (Courtesy of P. Ceintrey, Rhodia Electronics & Catalysis) MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  13. » 200 nm Chapter 5 Selected applications Eliminating mercury from lamps: quantum cutting Eu Gd 6 G J b a 6 P Ardischarge190 nm J 3 5 D J 2 1 0 b a 8 7 S F 7/2 J MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  14. UV Chapter 5 Selected applications 5.5 Security inks Euro bills MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  15. lexc EuIII 2 370.5 nm 5D07FJ J = l / nm 1 0 4 3 560 580 600 620 640 660 680 700 720 Chapter 5 Selected applications The euro is protected by the luminescence from europium: red from EuIII Europium was discovered byEugène A. Demarçay in 1901 in Paris MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  16. l/nm 450 500 550 600 650 700 Chapter 5 Selected applications Possibly EuII ? lexc= 375 nm MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  17. Chapter 5 Selected applications 5.6 Luminescent chemical sensors The specific spectroscopic properties of LnIII ions makethem ideal luminescent probes: - easily recognizable line-like spectra - long lifetimes of excited states - large Stokes’ shift upon ligand excitation Time-resolved luminescence allows high signal-to-noiseratios, henceforth high sensitivity Lanthanide-containing luminescent probes can be used as: - structural probe (site symmetry) - analytical probes (mainly for bio-analyses) - imaging probe for medical diagnosis (tumorimaging) MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  18. I em 2-4 ms measurement Chapter 5 Selected applications Time-resolved luminescence: an essential tool Background luminescence UV pulse Eu emission Detection limits Ion lexce/103 lem/nm t/ms QDet. lim. Eu 340 36 613 730 0.69 0.05 pM Sm 340 36 643 50 0.02 3.5 pM time MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  19. hn hn an + an Chapter 5 Selected applications LnIII luminescence as signaling method a) Direct binding of the analyte modifies the LnIII inner co-ordination sphere hn hn Here, water molecules are expelled, lifting theluminescence quenching. J.-C. Bünzli & C. Piguet, Chem. Soc. Rev. 2005, 34, 1048 MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  20. hn an hn an Chapter 5 Selected applications b) Binding of the analyte to a ligand modifies its energy- transfer properties Here, binding of the analyte results in a quenching of themetal-centered luminescence. Alternatively, luminescence can be activated by such abinding. MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  21. hn hn an an hn hn Chapter 5 Selected applications c) Binding of the analyte to a ligand initiates an energy- transfer process to the metal ion Note: in bio-analyses, specific biochemical reactionsare usually used to render the analysis target specific. MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  22. OH2 OTf2 O OTf2 Eu P N N N N O N O O O OTf2 Eu P N N N N Chapter 5 Selected applications a) Modification of inner coordination sphere: anion analysis In acetonitrile: Q = 2.6 % t = 0.86 ms OTf = CF3SO3- Q = 30 % t = 1.45 ms Kassoc = 106 L. J. Charbonnière et al., J. Am. Chem. Soc.2002, 124, 7779 MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  23. H3O+ -H3O+ (H2O) Chapter 5 Selected applications Supramolecular pH sensor pH sensor pHrange 5–7.5 modulates electrondensity ofN-atom D. Parker et al, J. Am. Chem. Soc. 2001, 123, 7601 MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  24. Chapter 2 Physico-chemical properties Supramolecular pH sensor EuIIILuminescence MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  25. Ln binding unit O O O O O O O O O O O O N N N N N N O O O O O O O O O O O O O O O O O O K+ receptor K+ receptor Chapter 5 Selected applications b) Removal of a quenching process electronic relays Eu logK = 4.8 (MeOH) A.P. de Silva et al., Chem. Commun.1997, 1891 MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  26. UV-irradiation O O O O N N O O O O N N N N O O O O O O O O N N N N O O O O Eu Eu Eu Eu M M e e O O O O O O M M e e O O EuII EuIII Luminescence quenched by PET process Chapter 5 Selected applications Q = 2.6% in MeOH A.P. de Silva et al., Chem. Commun.1997, 1891 MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  27. UV-irradiation Chapter 5 Selected applications K K Eu logK = 4.3 (MeOH) Q = 47 % in MeOH light emission A.P. de Silva et al., Chem. Commun.1997, 1891 MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  28. H H O O N N N N O O OH OH OH OH 2 2 2 2 Tb Tb Tb Tb Tb Tb N N O O O O O O N N N N O O H H O O Chapter 5 Selected applications c) Initiating an energy transfer process Strong Tb emission in H2O due to efficient energy transfer from host b-CD coupled to dtpa weak Tb emission in H2O Nocera et al., Coord. Chem. Rev. 1998, 171, 115 MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  29. H O N N O OH OH 2 2 Tb Tb Tb N O O O N N O H O c / ppm Chapter 5 Selected applications Supramolecular PAH sensor 40 Irel 30 20 Tb luminescence enhancement 10 0 0 5 10 15 20 MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  30. H O N N O OH OH 2 2 Tb Tb Tb N O O O N N O H O Chapter 5 Selected applications Supramolecular PAH sensor 34.9 S1 kisc = 5.2·108 s-1 ket = 8.3·104 s-1 22.9 3T E / 103 cm-1 20.4 5D4 kr = 1.7·104 s-1 Tb3+ 7FJ S0 0 Nocera et al., Coord. Chem. Rev. 1998, 171, 115 MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  31. Chapter 5 Selected applications Supramolecular PAH sensor (2) Enhancement of the Tb luminescence in de-oxygenated solution by supramolecular fixation ofnaphtalene sensitised Tb3+ emission permethylated b-CD Large association constant: logK = 4 D. Parker et al., J. C. S., Perkin Trans. 2, 2000, 1329 MSc: f-Elements, Prof. J.-C. Bünzli, 2008

  32. ( O M e ) 7 ( O M e ) 7 logKnapht = 4 H O O N O H 2 ( O M e ) 6 N N O T b O N N O O O Chapter 5 Selected applications Supramolecular PAH sensor (2) Benesi-Hildebrand analysis (I - I0)-1 c-1 / 104 M-1 D. Parker et al., J. C. S., Perkin Trans. 2, 2000, 1329 MSc: f-Elements, Prof. J.-C. Bünzli, 2008

More Related