1 / 31

gg physics at the LC

gg physics at the LC. Giulia Pancheri - INFN-Frascati. AdA: where e+e- collisions were born. Where e+e- collisions were born. For same cm energy  xsections are larger. Photon-photon processes.

avery
Télécharger la présentation

gg physics at the LC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. gg physics at the LC Giulia Pancheri - INFN-Frascati AdA: where e+e- collisions were born Where e+e- collisions were born G. Pancheri - gamma gamma at LC

  2. For same cm energy  xsections are larger G. Pancheri - gamma gamma at LC

  3. Photon-photon processes • Formation of neutral resonances with other quantum numbers than in e+e- , with C=+ and J=0,2 • Higher mass reach since particles can be produced individually (not necessarily in pairs) • The ggH loop is sensitive to all charged fundamental particles of the theory • Direct pair production of new fermions, charged scalars, charged vectors • Pair production of neutral scalars, vectors (in loop, also gg gg • Measurement of parton densities of real real photons (in eg mode) G. Pancheri - gamma gamma at LC

  4. Normal mode of operation ECM approx up to 1/2 ee Non-monochromatic Can access JP=0± QCD and some top Total cross-sections Photon Collider ECM ~ 0.8 EeeCM Lum ~ 0.2 ee Higgs and top physics EWSB, SUSY are accessible and interesting photon-photon G. Pancheri - gamma gamma at LC

  5. G. Pancheri - gamma gamma at LC

  6. Photon Collider Energy is transferred to the photon up to almost 80% of initial electron’s • Compton Back Scattering of laser light G. Pancheri - gamma gamma at LC

  7. G. Pancheri - gamma gamma at LC

  8. G. Pancheri - gamma gamma at LC

  9. G. Pancheri - gamma gamma at LC

  10. QCD tests • Pomeron? • Jets • Photon densities • Models for total cross-section G. Pancheri - gamma gamma at LC

  11. Models for total x-sections • Interest lies in QCD role • What is the Pomeron? The Reggeon? • Are these concepts universal? • Or do they just phenomenologically describe our ignorance? • How can ILC help ? A.de Roeck, R. Godbole, A. Grau, G. Pancheri, JHEP 2003 G. Pancheri - gamma gamma at LC

  12. s=Bs-h + Ase+ Cse1 • Fit3 C≠ 0 e=0.093 e1=0.418 • Fit 1 C=0 e=0.250 • Fit2 C=0 e=0.093 as in pp G. Pancheri - gamma gamma at LC

  13. se : e controls the rise • Could e be the same for all hadronic cross-sections? • The total gg x-section is extracted from data which do not include all the phase space • MC simulations are based on minijets models which indeed are the best in simulating L3 data G. Pancheri - gamma gamma at LC

  14. se : e controls the rise • Should e be the same for all hadronic cross-sections? • Yes if the model • is based on Regge poles and a universal Pomeron pole exchange or • On Gribov factorization alone • Not necessarily if • The model has some connection with QCD and photon densities play a role G. Pancheri - gamma gamma at LC

  15. A realistic QCD model should relate the fit to QCD phenomenological inputs quantities like densities etc. G. Pancheri - gamma gamma at LC

  16. The BN Eikonal Minijet model includes kt resummation R.Godbole, A. Grau, G.Pancheri, Y.Srivastava PRD 2005 A. Corsetti, A. Grau, G.Pancheri, Y. Srivastava PLB 1996 • Multiple parton interactions : optical theorem and eikonal representation for Tel(s,t) • Hard scattering to drive the rise due to 1/x • Soft gluons down to zero momentum to tame the rise G. Pancheri - gamma gamma at LC

  17. The hard cross-section • Mini-jet cross-section S∫ densities ∫dpt ds/dpt G. Pancheri - gamma gamma at LC

  18. The hard scattering part • qq,qg and mostly Minijet cross-section depends upon • parton densities • GRV, MRST, CTEQ for protons • GRS, CJK for photons • pt cutoff ptmin=1~ 2 GeV g g g g G. Pancheri - gamma gamma at LC

  19. Soft resummation Probablity of total KT from infinite # of soft gluons ∫ d2b eiKTb exp{-∫d3n(k)[1-e-iktb]} depends upon single gluon energy • maximum : use Kinematics • minimum : 0 if Bloch-Nordsieck states G. Pancheri - gamma gamma at LC

  20. Role of resummation An infinite number of soft quanta • down to zero momentum but how? next slides • Up to an energy dependent limit qmax • Higher hadron energy possibility of more small x partons with “high energy” (≈1-2 GeV) higher qmax G. Pancheri - gamma gamma at LC

  21. Maximum soft gluon energy • q1 and q2 : any two partons • X : the 2-jet final state • Q2≥4 p2tmin • qmax depends on x1,x2 • We average it over densities G. Pancheri - gamma gamma at LC

  22. Zero momentum quanta • Soft gluons need to be resummed if they are indeed soft ≈1/k • Resummation implies integration over dkt • What matters will be ∫as(kt )dkt f(kt) and not as(0) G. Pancheri - gamma gamma at LC

  23. Soft gluons give b-distributions In eikonal representation stot≈2∫d2b [1-e-n(b,s)/2] • n(b,s)=average # of collisions at distance b, at energy √s • b-distribution is needed Our ansatz: b-distribution = Fourier transform of soft gluon Kt distribution G. Pancheri - gamma gamma at LC

  24. How the model works • Choose ptmin = 1÷2 GeV for mini-jets • Choose parton densities • Calculate minijet x-section • Calculate qmax for soft gluons • Calculate A(b,s) for given qmax • Calculate nhard (b,s)=A(b,s) sjet(ptmin,s) • Parametrize nsoft • Evaluate n(b,s)= nsoft + nhard • Eikonalize stot≈2∫d2b [1-e-n(b,s)/2] G. Pancheri - gamma gamma at LC

  25. qmax for ptmin=1.15 geV G. Pancheri - gamma gamma at LC

  26. sjet for ptmin=1.15 GeV green band MRST G. Pancheri - gamma gamma at LC

  27. b-distribution for hard collisions from soft gluon resummation for ptmin=1.15 GeV for singular as G. Pancheri - gamma gamma at LC

  28. Example of Eikonalized proton-antiproton total cross-section for ptmin=1.15 G. Pancheri - gamma gamma at LC

  29. Comparison with proton data R.Godbole, Grau R. Hedge G. Pancheri Y. Srivastava Les Houches 2005 GGPS PRD 2005 G. Pancheri - gamma gamma at LC

  30. photon-photon : eikonal minijet and BN model G. Pancheri - gamma gamma at LC

  31. Conclusions gg in Photon Collider Mode would be very interesting for Higgs, WW, unknown resonances, etc. In regular mode, QCD and total cross-sections measurements can give insight on details of low x physics complementary to LHC G. Pancheri - gamma gamma at LC

More Related