1 / 17

Understanding, controlling, and overcoming decoherence and noise in quantum computation

Understanding, controlling, and overcoming decoherence and noise in quantum computation. Kaveh Khodjasteh, D.A.L., PRL 95 , 180501 (2005); PRA 75 , 062310 (2007). NSF September 10, 2007. +. Quantum Computers are Open Systems: Decoherence.

Télécharger la présentation

Understanding, controlling, and overcoming decoherence and noise in quantum computation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Understanding, controlling, and overcoming decoherence and noise in quantum computation Kaveh Khodjasteh, D.A.L., PRL 95, 180501 (2005); PRA 75, 062310 (2007) NSF September 10, 2007

  2. + Quantum Computers are Open Systems: Decoherence Quantum computers use superposition and entanglement (“massive parallelism”) Every real quantum system interacts with an environment (“bath”). Environment is noisy & uncontrollable. The environment acts as an uncontrollable observer, making random-time measurements, in random basis. Destroys superposition states. Devastating for quantum computation: A sufficiently decohered quantum computer admits efficient simulation on a classical computer.

  3. 2 level system (qubit) Switch time T Rabi flop [sec] Decoherence time T2(upper bound) Quality factorT2/T (no. of ops) Charge of electron in bulk GaAs 10-13 aaaaa 10-9 aaaaa 104 aaaaa Exciton in GaAs quantum dot 10-15 aaaaa 10-12 aaaaa 103 aaaaa Electron spin in GaAs quantum dot 10-10 aaaaa 10-6 aaaaa 104 aaaaa Trapped ion (In) sdddd 10-6 aaaaa 10-1 aaaaa 105 aaaaa Nuclear spin in liquid state NMR 10-3 aaaaa 10+4 aaaaa 107 aaaaa Atom in microwave cavity 10-14 aaaaa 10-5 aaaaa 109 aaaaa Is Decoherence a Problem? How can we overcome decoherence?

  4. l h l ¯ D i i i i t t t ¯ b l d l H J i i i t t t t p o a r n e r a c o n a m o n g e n u c e : y p e r n e n e r a c o n e w e e n e e c r o n s a n n u c e : d f S G A t o m e a a o r a s ( ) J O I § A M H 1 ¼ z H H H H = + + n n = S S B B 2 ( ) ¯ O I § B K H 1 0 ¼ z = X X X < ~ ~ ~ n m n m [ ] ~ ­ Z A I B I I + + ¢ ¾ = i i i i n n n m n m ; i i n m n ; ; Example: electron spins in a semiconductor quantum dot Model: [Merkulov, Efros, Rosen, PRB. 65, 205309, (2002)]

  5. A B 1 1 1 3 ; ; System Bath Robust Hadamard Gate for Spin Bath

  6. ( ) ( ) f l l C H i t t t t o n a n s o u r a u y c o n r o c h l h l b T H i i i i t t t t t e r e e x s s a p u s e s e q u e n c e a e m n a e s a n y a r r a r y S B H I B X B Y B Z B ­ + ­ + ­ + ­ = S X Y Z 0 e ( ) H H I I H H t ­ + ­ + = S B S B S B System-Bath Model of Decoherence and Noise Besides the quantum system S there is always an environment or bath B. Hamiltonian: For a single system qubit Errors come from faulty control and undesired couplings with the environment. Indirectly also from .

  7. ± b l k f l P i 0 t r o ¿ e m : w o r s m p e r e c y ! ; h ± 6 0 w e n ¿ = ; . l E t r r o r s a c c u m u a e a s s e q u e n c e g r o w s . on system Universal Dynamical Decoupling A pulse sequence that eliminates the system-bath interaction for a single qubit: =

  8. Concatenated Universal Dynamical Decoupling To counter error accumulation, correct errors at all timescales: Nest the universal DD pulse sequence into its own free evolution periods f : p(1)= X f Z f X f Z f p(2)= X p(1)Z p(1)X p(1)Z p(1) etc. Length grows exponentially; how about error reduction?

  9. h l d h l F i i i n 4 t t t t t x e o a s e q u e n c e u r a o n s o a s ¿ p u s e s . l l i t t n c o n c a e n a o n e v e = l l i t ¿ p u s e n e r v a = l d h A i t s s u m e z e r o p u s e w j j a n 4 ( ) ¯ d 1 ¸ ¡ n 2 j j b 4 n Performance of Concatenated Sequences [Khodjasteh & Lidar, PRA 75, 062310 (2007) ]

  10. l f h b h l d h h b f l l b f b h S H i i i i i i t t t t t + m u a o n s o r a s p n c a n s y s e m a c o u p e r o u g e s e n e r g o r a s m a n u m e r o a s p n s , . h l l l h f h f h ¯ l d N T i i i i i t t t t t t t n s e c o n c a e n a o n e v e o r o g e m e a s u r e o e r r o r s e o n e m n u s p u r y o e n a r a c e 4 . h b h h l l b W K i i i 1 t t t t t t t t t t t t t o u s y s e m s a e e s a r e a a a e r m a e q u r u m a a e m p e r a u r e n e a r . . 2 ( ( ) ) j j j j l ¯ d b 1 · ¡ ¡ o g n a n n Dynamical Decoupling for Quantum Memory: Numerically Exact Simulations for Spin Chain Spin bath initially in equilibrium at 1K Theory bound:

  11. 1 j i ( j i j i ) ( j i j i ) 0 0 1 1 0 0 1 1 0 ¡ ¡ = L 2 1 j i ( j i j i j i j i j i j i ) 1 2 0 0 1 1 2 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 1 + ¡ ¡ ¡ ¡ = L p 2 3 Computation Problem: DD pulses can interfere with logic gates (cancel them too) How can they be reconciled? • Need a commuting structure of pulses and computation. • Use encoded qubits from a DFS. Pick DD pulses to commute with logical gates over DFS, such that DD pulses are still a universal decoupling group. 1 ( ) ( ) =+-+++ 23

  12. ¹ ¹ µ µ X 2 Z 1 i i ¹ ¹ P ( ( ) ) P d b l d d b H X Z E E J X E X Y Y Z Z J E i i i t t t t ¡ ¡ + + + ´ e a n e g e n e r a e a r r a r y s n g e e n c o e q u g a e s = = = H i i j i j i j i j i j i j 1 2 1 3 1 2 i j i j e s p 2 3 ; ; Heisenberg Computation over DFS is Universal • Heisenberg exchange interaction: • Universal over collective-decoherence DFS [J. Kempe, D. Bacon, D.A.L., B. Whaley, Phys. Rev. A 63, 042307 (2001)] • Over 4-qubit DFS: CNOT involves 14 elementary steps (D. Bacon, Ph.D. thesis)

  13. ( = ) µ N H i ¡ [ ] Z X H Z X X Z 0 t g a e ¢ ¢ ¢ ¢ ¢ ¢ e o r = H M M i 1 1 e s ; Universal Decoupling Group Commutes with Heisenberg Exchange • n levels of concatenation, N=4npulses • Universal decoupling group on M (even) system-spins: p(1)= X U Z U X U Z U p(2)= X p(1)Z p(1)X p(1)Z p(1) … X Z X Z X U U U U t Next: demonstrate discrete set of (encoded) single-qubit gates from universal set

  14. ¯ ¯ M M H H 0 1 0 1 0 z z = = A B 1 1 1 3 : ; ; System Bath 4-Qubit DFS π/8 Gate + CDD: ideal pulses, varying internal bath coupling PDD Internal bath coupling CDD J=10MHz, T=100nsec Concatenation Level

  15. J J M M H H 0 1 0 0 1 z z = = A B 1 1 1 3 : ; ; System Bath 4-Qubit DFS π/8 Gate + CDD: ideal pulses, varying system-bath coupling PDD system-bath coupling CDD β=10MHz, T=100nsec Concatenation Level

  16. A B 1 1 1 3 ; ; System Bath 4-Qubit DFS Logic Gate + CDD, Finite Width Pulses t

  17. Conclusions • Decoherence and noise remain the fundamental obstacle to large scale implementation of quantum computers • A concatenated dynamical decoupling strategy drastically improves fidelity of quantum memory and quantum logic gates • What next? • Consider Hybrid CDD-QEC strategy • What is the fault-tolerance threshold for this hybrid setting? • Optimal Decoupling: Can we do better than CDD?

More Related