1 / 55

Acid-Base Interpretation: E asy as 1-2-3-4

Acid-Base Interpretation: E asy as 1-2-3-4. Eric Dryver Emergency Department, Skåne ’ s University Hospital, Lund. Normal A rterial Values. Venous vs Arterial Values. Terminology. Acidemia : pH < 7.38 Alkalemia : pH > 7.42 Acidosis : process that decreases pH

bernardino
Télécharger la présentation

Acid-Base Interpretation: E asy as 1-2-3-4

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Acid-Base Interpretation:Easy as 1-2-3-4 Eric Dryver Emergency Department, Skåne’s University Hospital, Lund

  2. Normal ArterialValues

  3. Venous vs ArterialValues

  4. Terminology Acidemia: pH < 7.38 Alkalemia: pH > 7.42 Acidosis: process thatdecreases pH Alkalosis: process thatraises pH

  5. Step 1: Dominant Disorder? pH < 7.38 + • HCO3 < 22 mmol/L: metabolicacidosis • pCO2 > 5.7 kPa: respiratoryacidosis pH > 7.42 + • HCO3 > 26 mmol/L: metabolicalkalosis • pCO2 < 5.0 kPa: respiratoryalkalosis

  6. pH < 7.38 (acidemia) • HCO3 < 22 mmol/L • Dominant Disorder: metabolicacidosis

  7. pH < 7.38 (acidemia) • pCO2 > 5.7 kPa • Dominant Disorder: respiratoryacidosis

  8. pH > 7.42 (alkalemia) • HCO3 > 26 mmol/L • Dominant Disorder: metabolicalkalosis

  9. pH > 7.42 (alkalemia) • pCO2 < 5.0 kPa • Dominant Disorder: respiratoryalkalosis

  10. pH < 7.38 (acidemia) • pCO2 > 5.7 kPa: respiratoryacidosis • HCO3 < 22 mmol/L: metabolicacidosis

  11. pH Between 7.38 and 7.42 • If the pH is normal, there are two possibilities: • No acid-base disturbances • ≥ 2 acid-base disturbances

  12. pH normal • pCO2 > 5.7 kPa: respiratoryacidosis • HCO3 > 26 mmol/L:metabolicalkalosis

  13. pH normal • pCO2 < 5.0 kPa: respiratoryalkalosis • Lactate > 2 mmol/L:metabolicacidosis

  14. Arterial pH 7.40 (normal) • Arterial pCO2 approx 5.6 kPa (normal) • HCO3 25 mmol/L (normal) • No apparent acid-basedisturbances

  15. Step 2: Compensation? • In the settingof a metabolic disorder, thereshould be a respiratorycompensation • The respiratorycompensation is immediate • The respiratorycompensation is proportional to the metabolic disorder

  16. RespiratoryCompensation • You sprint over 100m • Youdevelop a metabolicacidosis(lactate) • Youhyperventilate (not a disorder, rather a normal physiologicalresponse) • The degreeof hyperventilation is proportional to the degreeofacidosis Picture: https://movietvtechgeeks.com/wp-content/uploads/2016/08/usain-bolt-at-rio-olympics.jpg

  17. ExpectedRespiratoryCompensation

  18. Expected Compensation • ∆ HCO3 = 24 - 4 = 20 • ∆ pCO2 = 20 x 0.16 = 3.2 • Expected pCO2 = 5.3 – 3.2 = 2.1 • Actual pCO2 = 1.9 Interpretation • Appropriate respiratory compensation: there are no apparent respiratory disorders

  19. Expected Compensation • ∆ HCO3 = 24 - 13 = 11 • ∆ pCO2 = 11 x 0.16 = 1.8 • Expected pCO2 = 5.3 – 1.8 = 3.5 • Actual venous pCO2 = 5.44 • Actual arterial pCO2 approx 4.4 Interpretation • The patient has a respiratory acidosis

  20. Expected Compensation • ∆ HCO3 = 24 – 9 = 15 • ∆ pCO2 = 15 x 0.16 = 2.4 • Expected pCO2 = 5.3 – 2.4 = 2.9 • Actual pCO2 = 1.07 Interpretation • The patient has a respiratory alkalosis

  21. Expected Compensation • ∆ HCO3 = 37 – 24 = 13 • ∆ pCO2 = 13 x 0.09 = 1.2 • Expected pCO2 = 5.3 + 1.2 = 6.5 • Actual pCO2 = 6.3 Interpretation • Appropriate respiratory compensation: there are no apparent respiratory disorders

  22. Step 2: Compensation? • In the settingof a respiratory disorder, a metaboliccompensationcanoccur • The metaboliccompensationentakes 3-5 daystofullydevelop • The metaboliccompensation is proportional to the degreeof the chronicrespiratory disorder

  23. ExpectedMetabolicCompensationto a ChronicRespiratory Disorder

  24. Expected Chronic Compensation • ∆ pCO2 = 12.1 – 5.3 = 6.8 • ∆ HCO3 = 6.8 x 2.62 = 18 • Expected HCO3 = 24 + 18 = 42 • Actual HCO3 = 25 Interpretation • Acute respiratory acidosis

  25. Expected Chronic Compensation • ∆ pCO2 = 8.0 – 5.3 = 2.7 • ∆ HCO3 = 2.7 x 2.62 = 7.1 • Expected HCO3 = 24 + 7 = 31 • Actual HCO3 = 29 Interpretation • Chronic respiratory acidosis

  26. Akut respiratorisk alkalos Expected Chronic Compensation • ∆ pCO2 = 5.3 -1.7 = 3.6 • ∆ HCO3 = 3.6 x 3.0 = 11 • Expected HCO3 = 24 - 11 = 13 • Actual HCO3 = 23 Interpretation • Acuterespiratory alkalosis

  27. Step 3: Ions • Calculate the Anion Gap (AG) • Estimate the Delta AG • CalculateDelta AG + HCO3

  28. Anion Gap • Total charge (cations) = total charge (anions) (electroneutrality) • The albumin present in blood is negativelycharged • In order topreserveelectroneutrality: Na+ > (Cl- + HCO3-)

  29. Anion Gap & Electroneutrality Anion Gap: Na–Cl–HCO3

  30. ExpectedAnion Gap (AG) 6-12 mmol/L Depends on how Na, Cl & HCO3 arederivedlocally • In my practice, my hunch is that • patients < 20 years have AG ≈6 mmol/L • patients > 60 years have AG ≈12 mmol/L

  31. Delta Anion Gap • Delta AG = Actual AG – Expected AG • In the presence of a Delta AG, extra anions are present, i.e. the patient has a metabolic acidosis • It is the Delta AG that needs to be explained, not the Anion Gap per se

  32. Anion Gap & Delta AG? • Revealswhether a metabolicacidosisis beingconcealed by a concurrentmetabolicalkalosis

  33. 24-Year-Old withType 1 DM • pH 7.40 • pCO2 5.3 • HCO3 24 • Glucose 19 • Na 140 • Cl 98 • pH, pCO2, HCO3 are normal. • AG: 140 – 98 – 24 = 18 • Expected AG ≈7 • Delta AG 11: metabolic acidosis likely DKA • A metabolic alkalosis must also be present (vomiting?)

  34. pH normal • pCO2 < 5.0: mild respiratory alkalosis • HCO3 23 yet lactate 3.5: mild metabolic acidosis • AG: 128 – 79 – 23 = 26 • Expected AG ≈ 11 (57 years) • Delta AG: 15, thus marked metabolic acidosis!

  35. Anion Gap & Delta AG? • Narrows the differential diagnosisof the metabolicacidosis

  36. TwoTypesofMetabolicAcidoses Increased AG MetabolicAcidosis Hyperchloremic MetabolicAcidosis Normal AG No metabolicacidosis

  37. pH < 7.38 & HCO3 < 22: metabolic acidosis • AG: 135 – 101 – 13 = 21 • Expected AG ≈ 9 (42 years) • Delta AG: 12 • Interpretation: increased AG metabolic acidosis (lactic)

  38. pH < 7.38 & HCO3 < 22: metabolic acidosis • AG: 140 – 111 – 17 = 12 • Expected AG ≈ 12 (93 years) • Delta AG: 0 • Interpretation: hyperchloremic metabolic acidosis (diarrhea)

  39. DDxMetabolicAcidosis Increased AG • Methanol, Metformin • Uremia • Diabeticketoacidos • Propyleneglycol, Pyroglutamicacid • Iron, Isoniazid • Lactate (L or D) • Ethyleneglycol, Ethanolketoacidos • Salicylates, solvents, starvationketoacidosis HCMA Loss of HCO3 from • Bowel(e.g. diarrhea) • Kidney(e.g. RTA) Administration of ++ NaCl

  40. AG: 135 – 101 – 13 = 21 • Expected AG ≈ 9 (42 years) • Delta AG: 12 • Lactate accounts for Delta AG • There is no suspicion of an alternative explanation for the increased AG

  41. AG: 128 – 79 – 23 = 26 • Expected AG ≈ 11 (57 years) • Delta AG: 15 • Lactate of 3.5 mmol/L • 11.5 mmol/L of anions remain to be accounted for

  42. Anion Gap & Delta AG? • A low, even negative anion gap canrevealanother disorder

  43. DDxLow/Negative Anion Gap Mnemonic LIMBS: • Lowalbumin, Li2+ • Iodide • Myeloma • Bromide • Salicylates

  44. 54 Year-Old BipolarUnconscious Step 1 • pH < 7.38 & HCO3 < 22: metabolic acidosis Step 2 • ∆ pCO2 = 6 x 0.16 = 1 • Expected pCO2 = 4.3: respiratory acidosis Step 3 • AG: 123 - 107 - 18 = - 2: lithium intoxication?

  45. Anion Gap & Delta AG? • Reveal and quantify a backgroundmetabolic disorder by calculating Delta AG + HCO3

  46. Delta AG + HCO3 • 1 mmol HCO3 is consummed by 1 mmol of added anion. • If the patient has a Delta AG of 10 mmol/L, the HCO3 has dropped by roughly 10 mmol/L • Actual HCO3 + Delta AG can be thought of as HCO3 ’prior’ to acquisition of extra anions

  47. Delta AG + HCO3 • Delta AG + HCO3 ≈ 24 mmol/L: no sign of a metabolic disturbance • Delta AG + HCO3 > 26 mmol/L: background metabolic alkalosis or compensation for a chronic respiratory acidosis • Delta AG + HCO3 < 22 mmol/L: background hyperchloremicmetabolic acidosis (HCMA)

  48. AG: 128 – 79 – 23 = 26 • Expected AG ≈ 11 (57 years) • Delta AG: 15, thus marked metabolic acidosis • Delta AG + HCO3: 23 + 15 = 38: marked metabolic alkalosis

  49. Step 4: Diagnosis Takeintoconsideration all available information: • Backgrund: pastmedicalhistory, medications . . . • History • Physicalfindings • Otherbedside test results

  50. DDxL-lacticAcidosis

More Related