1 / 25

Experimental review of CKM sides at B factories

Experimental review of CKM sides at B factories. A. Oyanguren (IFIC, UV-CSIC) (BaBar Collaboration). DISCRETE 2008. V td. V ub. V cb. Introduction & outline. The Cabibbo-Kobayashi-Maskawa matrix:. V ud V us V ub V cd V cs V cb V td V ts V tb. V CKM =.

bien
Télécharger la présentation

Experimental review of CKM sides at B factories

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Experimental review of CKM sides at B factories A. Oyanguren (IFIC, UV-CSIC) (BaBar Collaboration) DISCRETE 2008 Vtd Vub Vcb

  2. Introduction & outline The Cabibbo-Kobayashi-Maskawa matrix: VudVusVub VcdVcsVcb VtdVtsVtb VCKM= VudVub* + VcdVcb* + VtdVtb* = 0  From Bd and Bs mixing [@ hadron colliders (md/ ms)]  From exclusive sl decays: |Vcb|: BD*l, BDl; |Vub|: Bl, Bl B(‘)l, Bl… A ~|Vtd/Vts|  From radiative decays (bd/bs) ~|Vub/Vcb| From inclusive BXcl (|Vcb|) and BXul (|Vub|) decays (1,0) (0,0) 1 2 DISCRETE 2008 A. Oyanguren

  3. B-Factories  1200 fb-1recorded ! Analysis techniques: - - Hadronic or Semileptonic Tag K+ D0 Untagged (High efficiency) (High purity) lepton D0 Signal side Signal side lepton lepton B0 B0 B0 - B0 B0 B0 D*    +  + (4S) (4S) X X X (4S) Tag side Tag side 3 DISCRETE 2008 A. Oyanguren

  4. |Vcb| from exclusive sl decays From B D   (BR ~2% , suppressed at high q2) From B D*   (BR ~ 5%) Vcb q2 Kinematic function Form factor (shape & normalization) Theory: G(1)*=1.074  0.018  0.016 B  DD2 F(1)*=0.921  0.013  0.020 B D* D*2, R1(1), R2(1) Measuring the decay rate and ff shape  |Vcb| * M.Okamoto et al NPPS 140, 461(2005)) * C. Bernard et al arXiv:0808.2519 [hep-lat] 4 DISCRETE 2008 A. Oyanguren

  5. |Vcb| from BD • Select the lepton, • reconstruct the D0 into several channels  Reconstruct the other B into hadrons (Btag)  Reconstruct the missing mass: m2miss = (p(4s)– pBtag-pD-pl)2 m2miss = 0.04 GeV2  Fit the signal yield into 10 w bins (ML fit) 417fb-1 2 = 1.20 0.09  0.04  2 fit to extract D2 and G(1)|Vcb| G(1) |Vcb| = (43.0 1.9 0.4) 10-3 B (B0D+-)= (2.170.06 0.07)% arXiv:0807.4978 5 DISCRETE 2008 A. Oyanguren

  6. |Vcb| from BD* • Reconstruct the semileptonic decay • D0K, K3 + soft  (to make D*) • + lepton • The decay rate depends • on w, , V ,  • Constraint pB  pinclusive = pall–D*  Define the angle between the B and the D* candidate  4D 2 fit to extract D*2, R1, R2 and F(1)|Vcb| w = 0.025 cosv= 0.052  Fit the signal yield 140 fb-1 = 6.47 cos=0.047 preliminary F(1) |Vcb| = (34.4 0.2 1.0) 10-3 R1= 1.495 0.050  0.062 2 = 1.293 0.045  0.029 R2= 0.844 0.034  0.019 B (B0D*+-) = (4.420.03 0.25)% DISCRETE 2008

  7. Global fit to BD and BD* 207fb-1 • Reconstruct D0 and D+ candidates • (D0K-+, D+K-++) B(B-D*0-)= (5.370.02 0.21)% D*2 = 1.21 0.02  0.07 • Use p*, p*D and cosB-D to separate • BD and BD* decays F(1) |Vcb| = (35.7 0.2 1.2) 10-3 B (B-D0-)= (2.360.03 0.12)% • 3D 2 fit to the yields to extract the • form factor slopes, D and D* and BD • and BD* BRs (R1 and R2 fixed). D2 = 1.22 0.04  0.07 G1) |Vcb| = (43.8 0.8 2.3) 10-3 D preliminary D* 1 1.5 2 1.5 2 -2 -1 0 1 arXiv:0809.0828 7 DISCRETE 2008 A. Oyanguren

  8. |Vcb| from exclusive sl decays G(1)|Vcb| = (42.4  1.56) x 10-3 2/dof =1.2/8 usingG(1) =1.074  0.024 |Vcb| = (39.5  1.5exp 0.9latt) x 10-3 Exp: - waiting Belle update - systematics  tracking eff, radiative corrections, D** F(1)|Vcb| = (35.41  0.52) x 10-3 2/dof =39/21 using F(1) =0.921  0.024 |Vcb| = (38.4  0.6exp  0.9latt) x 10-3 - systematics  tracking eff, D** 8

  9.  Fully reconstructed analyses BD**l HQET PRD77,091503(2008) 605 fb-1 D* ? D** D Ground states Broad states Narrow states • B(B0Xc) > B(B0D)+ B(B0D*)+ B(B0D**) [10.1  0.4]% + [5.16  0.11]% + [1-2]% > [2.17  0.12]% B0D*0+- B-D*+-- 417 fb-1 B-D+-- B0D0+-  Belle does not see the D1’, BaBar does. arXiv:0808.0528 Theory predicts B(D1*,D2*) >> B(D*0,D1’), Experiments see B(D1*,D2*) <~ B(D0*,D1’) 9

  10. |Vcb| from inclusive sl decays Operator Product Expansion (OPE): x = Vcb f(parametersrelatedwithbquark propertiesinsidethehadron) kineticenergy, spin... Some inclusive observablesO  depend on the same parameters BXc : theleptonenergy, themassdistribution, (Forinstance: BXs : thephotonspectrum) Measurement of moments:  10 DISCRETE 2008 A. Oyanguren

  11. MXcand El moments • One B fully reconstructed into hadrons (Btag) • Oneleptonfromtheother B (signal) •  measure E (electrons) • Rest of particles  measure mx • Event by event calibration • Unfolded with SVD algorithm • < Een> measured as function of p*e cut • (from 0.4 to 2. GeV/c) • < Mxn> measured as function of p*l cut • (from 0.8 to 1.9 GeV/c) PRD 75, 032001(2007) 210fb-1 140fb-1 e+ arXiv:0707.2670 • < Mxn> for n=1,2,3,4,5,6 • < Een> for n=0,1,2,3,4 11 DISCRETE 2008 A. Oyanguren

  12. g W+ S b t • Select high energy photons (E*> 1.4 GeV) • Off-peak subtraction, • veto to photons from 0 and  • Unfolded with SVD algorithm • < En> measured as function of • Ecut (from 1.7 to 2.1 GeV) 605fb-1 • < En> for n=1,2 PRD 78, 032016(2008) 12 DISCRETE 2008 A. Oyanguren

  13. |Vcb| from inclusive sl decays  Using 27 moments from BaBar, 25 moments from Belle and 12 momentsfromotherexperiments(http://www.slac.stanford.edu/xorg/hfag/semi/ichep08/gbl_fits/kinetic/) |Vcb| =(41.67  0.43fit 0.08 B  0.58th) x 10-3 mb =(4.601  0.034) GeV 2 =(0.440  0.040) GeV2 (Exclusive (BD*): |Vcb| = (38.4  0.6exp  0.9latt) x 10-3 |Vcb|incl - |Vcb|excl : 2.5 13 DISCRETE 2008 A. Oyanguren

  14. |Vub| from exclusive sl decays Analysis methods:  Untagged (high stat., most precise)  Tagged (hadron or semileptonic) (BR ~ 0.01% + large bc bkg) p, h, h’, r, w •  reconstruction from full event • (p = pbeams - pi)  Fit E = EB – s /2 and mES = s/4-|p*B|2 to extract the signal yield 206fb-1 • q2= (pB - p )2 in 12 bins  Form factor fit B (B0-)= (1.460.07 0.08)x10-4 PRL 98, 091801(2007) 14 DISCRETE 2008

  15. |Vub| from exclusive sl decays Tagged B pB (sl tag) B (hadronic tag) pD(*)l pl  Reconstruct one B into hadrons (Btag) • Select the lepton from the other B • One B decaying into B D(*) (Btag) • select the  ( rec.  or  into pions) • Other lepton (-q) from the other B  Reconstruct the missing mass: m2miss = (p(4s)– pBtag-p-pl)2 • Define the systems Y=D(*) and X= • Fit to cos2B in 3 q2 bins • Extract yields in 3 q2 bins 348fb-1 B0- B+0 605fb-1 signal signal 0805.2408 [hep-ex] B (B0-)= (1.120.18 0.05)x10-4 B (B0-)= (1.540.17 0.09)x10-4 B (B+0)= (0.660.12 0.03)x10-4 15 DISCRETE 2008 A. Oyanguren

  16. |Vub| from exclusive sl decays Form factor necessary to extract |Vub| theory Models depend on q2 region: (Untagged analysis can measure the form factor from data) B (B0-)= (1.340.06 0.05)x10-4 PRL 98, 091801(2007) 16 DISCRETE 2008 A. Oyanguren

  17. |Vub| from exclusive sl decays B  (,,’,)  Checktheoreticalcalculations Composition of BXu 348fb-1 605fb-1 signal hadron tag sl tag: 0805.2408 [hep-ex] 347fb-1 B (B0-)= (2.800.18 0.16)x10-4 untagged 0808.3524 [hep-ex] 17 DISCRETE 2008 A. Oyanguren

  18. |Vub| from inclusive sl decays 50 : 1 BX = BXc + BXu • Theoryneedslowmomentumcutstoextract|Vub| (OPE breaksdown in theShapeFunction (SF) region: • low mx2 and q2) • OPE parameteres (mb, 2 ) frommoments in BXc and BXs • Experimentsneedhighmomentum • cutstosuppressb  c bkg Experimental technique: Measure partial BR  Tagged (sl or hadronic) or untagged  Use kinematic variables to suppress as much as possible b  c (keeping reliable theoretical calculations): El, q2, mX and P+ = EX -|pX| 18 DISCRETE 2008 A. Oyanguren

  19. Tagged (hadrons or sl) • Select regions below charm threshold • Key: bkg subtraction (off-peak data, • endpoint, MC… ) • bc bkg constrained by data in the • low energy region • One B fully reconstructed • Access to all kinematics (mx, q2, P+) • for the signal side signal 81fb-1 signal PR73:012006,2006. signal 27fb-1 bc (MC) 347fb-1 bkg bkg ~40-60% acceptance 1.55 GeV 0.66 GeV signal 8 GeV2 arXiv:0708.3702 PRB601:28(2005) 81fb-1 signal 604fb-1 bkg Shmax=f(E, q2) = maximum mx squared (new Belle multivariate analysis  no hard cuts, 90% PS) PRL95:111801(2005)

  20. |Vub| from inclusive sl decays Tagged (hadrons or sl) • Relating the rate to bs to reduce • model dependence (LLR method)  Moments of the full mass spectrum  OPE fit to extract mb, 2 and . unfolded 220fb-1 80fb-1 B  Xc B  Xs  B  Xu mx cut =1.67 mb =(4.604  0.250) GeV arXiv:0801.2985 2 =(0.398  0.240) GeV2 PRL96:221801(2006) mx cut (GeV/c2) 20 20

  21. |Vub| from inclusive sl decays OPE based + SF ‣BLNP: HQE with systematic introduction of SF PRD71:073006 (2005) ‣BLL: phase space in mx-q2 with reduced SF PRD64:113004 (2001) ‣GGOU: kineticscheme JHEP 10(2007) 058 ‣LNP (LLR): b→s directly related to b→ uν JHEP 0510:084 ( PLB 486:86 ) No SF introduced (model non-perturbative QCD) ‣DGE: DressedGluonExponentiation JHEP 0601:097 (2006) ‣ADFR: Analyticcoupling PRD74:03400(4,5,6) (2006) Vub incl Vub excl More data, more SP + improvementsfromtheoryneeded |Vub|from =(3.44  0.16)10-3 21 DISCRETE 2008 A. Oyanguren

  22. |Vtd/Vts| from radiative decays  Exclusive b u,c,t d/s  - , / K* B- Inclusive (Sum of all channels) Formfactors u arXiv:0804.4770 • Select high energy photons B→ Xsg • veto to photons from 0 and  • remove bkg from continuum  Yield from E = EB – s /2 and mES = s/4-|p*B|2 0.6 < MXd/s < 1.0 GeV (error from fBsBBs / fBdBBd ) B→ Xdg NeedSuperB! 1st error exp., 2nd theo. 22 DISCRETE 2008 PRL101:111801,2008

  23. Summary The CKM matrix:  decays  Decays (0+0+) Vud/Vud ~ 0.03% Vus/Vus ~ 0.4% Vub/Vub ~ 8% Vcd/Vcd ~ 5% Vcs/Vcs ~ 11% Vcb/Vcb ~ 2% Needtheoryimprovements (excl . vs incl. ??) (Vtd/Vts)/(Vtd/Vts) ~ 3% Vtb/Vtb ~ 15% charm sl decays 23 DISCRETE 2008 A. Oyanguren

  24. Backup HFAG 24 DISCRETE 2008 A. Oyanguren

  25. Backup HFAG 25 DISCRETE 2008 A. Oyanguren

More Related