1 / 30

L ’ énigmatique astéroïde (21) Lutetia

L ’ énigmatique astéroïde (21) Lutetia. M.A . Barucci, S. Fornasier , C. Leyrat , S. Erard , D. Perna , P. Hasselmann , M. Fulchignoni , D. Bockelée-Morvan & I. Belskaya. 120. 121 ±1 x 100 ±1 x 75 ±13 km 3. (Barucci et al. 2014, Asteroids IV book). grooves.

brant
Télécharger la présentation

L ’ énigmatique astéroïde (21) Lutetia

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. L’ énigmatique astéroïde (21) Lutetia • M.A. Barucci, S. Fornasier, C. Leyrat, S. Erard, D. Perna, P. Hasselmann, M. Fulchignoni, D. Bockelée-Morvan & I. Belskaya

  2. 120 121±1 x 100±1 x 75±13km3

  3. (Barucci et al. 2014, Asteroids IV book) grooves Matteo Massironi, UPD

  4. Surface age: 100 Ma-3.6Ga

  5. Albedovariation up to 30%Spectral reddening • ( Sierkset al., 2011, Science 334, 487 B=268 nm G=536 nm R=743 nm Reddening Map North Pole • Inhomogeneous surface • Equatorial hemisphere redder than Northern one • Young regions inhomogeneous

  6. VIRTIS-M & H (Coradini et al., 2011, Science, 334, 492)

  7. Temperature & Thermal Inertia Tmax= 245 K Thermal Inertia : I ~20-30 SI units • Thick regolith Morphological variation • Small Thermal Inertiaconfimedby: • - MIRO (Gulkis e al. 2012, PSS Special issue) • - Herschel (PACS & SPIRE) (O'Rourke, et al. 2012, PSS) (Coradini et al. 2011)

  8. OSIRIS data

  9. Inhomogeneity on the surface of 21 Lutetia Aqueousalteredmaterials ? ferriciron spin-forbidden absorptions, phyllosilicates (jarosite…)? (Perna, D. et al. 2010) Lazzarin et al., 2010, MNRS 408, 1433

  10. Presence of 3 micron band (Rivkin et al. 2011, Icarus, 216,62 ) (Birlanet al., 2006, A&A, 454, 677) Birlan et al. 2006 and Rivkin et al. (2000) observed the 3 micron band diagnostic of water of hydratation; new data of Birlan et al. 2010 do not confirm this detection (different observed area), new data by Rivkin et al. 2011 confirm the band.

  11. 21 LUTETIA: Emissivity - SPITZER CV meteorite CO3 carb. chondrite Iron meteorite … 20-50 micron ___0-20 micron • The Lutetia emissivity spectrum is completely different from that of the iron meteorites • Low thermal inertia: I ≤ 30 JK−1 m−2 s−1/2 , typical of main belt asteroids; Lutetia is likely covered by a thick regolith layer • Lutetia is similar to CV3 and CO3 carbonaceous chondrites, meteorites which experienced some aqueous alteration ___0-20 micron --- 50-100 micron CV3 carb. chondrite ___100-150 micron --- >150 micron. Enstatite chondrites C peak at 8.3 µm (Izawa et al. 2010) (Barucci et al., 2008)

  12. COMPARISON WITH METEORITES (Belskaya et al., 2011)

  13. Lutetia ground observations on the cilindrical projection 0.4-0.9 µm 0.8-2.5 µm 2-3.5 µm Barucci et al. (2012) 5-38 µm

  14. V albedo = 0.19±0.01

  15. (Barucci et al. 2012) Lutetia o = hemispherical* = bidirectionalmeasurements

  16. Lutetiadensity(Patzold et al. 2011) 3.40± 0.3 g/cm3(Weiss et al. 2011) (Weiss et al. 2012) • apparent high density (exceeds that of most known chondrite meteorites) • surface similar to chondrite + metallic core

  17. Kaidun meteorite 8-µm particle from comet 81P/Wild 2. sulphide pyrrhotite, enstatite grain and fine-grained porous aggregate material with chondriticcomposition (Brownlee e al. 2006) This Kaidun meteorite (Yemen in 1980) is a mixture of “incompatible “ materials: principal carbonaceous chondrites (CV, CI, CM, CR) and estatite chondrites (EH and EL) and other peculiar materials. Therefore, in a single particle, materials which formed in different regions in a protoplanetary disk can co-exist, which was not expected.

  18. Summary (21 Lutetia) • Lutetia exposes fascinating morphology with many craters, grooves, ridges, graben, scarps etc. • Old and young regions (10Ma-3.6Ga) • Surface with small grain size • Blanket in North Pole region suggests a thick layer of regolith/ejecta • Color variations • Different from any other asteroid visited so far • Different from any meteorite? (surface more similar to chondrite) • High density (exceeds that of most known chondrite meteorites) • The surface seems a mixture of different types of materials: • carbonaceous chondrite (for the majority) and enstatitechondrite (in minor percentage) • Lutetia is an old object (with a surface age of 3.5 Gy) with a primitive chondrite crust and a possible partial differentiation (Weiss et al. 2012) with a metallic core

  19. (a) Average densities of meteorites for C type asteroids: 2.9 – 3.5 g/cm3 (b) Average densities of meteorites for S type asteroids: 3.19 – 3.40 g/cm3 (c) Average densities of aubrites 2.97 – 3.27 g/cm3

  20. Spectral slope(989 nm/ 649 nm) Accumulation area are redderthanlandslides Landlsideswith ~flat spectrum Leyrat et al., 2011

  21. Opposition Images 26.000 km -0:30h 20.000 km -0:22h 17.000 km -0:19h 16.000 km -0:18h α = 4.1° α = 2.0° α = 0.6°α = 0.15°

  22. CV3 (red) CI (green) E6 (Blue) (Nudelcu et al. 2007) (Birlan et al. 2006)

  23. Complementary informations Herschel observed Lutetia ! O'Rourke, Barucci, Dotto et al.... SPIRE 250, 350 & 500 µm 11 jul. 2010 PACS 70, 100 & 160 µm 21 dec. 2009

  24. ALICE (Stern et al. 2011, AJ, 141, 199) A tentative model fitting the Lutetia’s albedo : 77% EH5 chondrite and 7.7% each of anorthite, H2O frost and SO2 frost.

  25. DEPENDENCE ON GRAIN SIZE: CARBONACEOUS CHONDRITES Absolute reflectivity vs grains size • a strong dependence on grain sizes: albedo tends to increase when particle size decreases; • grain size of components of different hardness is not well-controlled when meteorite is crushed; • albedo of particular types of carbonaceous chondrites is well-consistent with Lutetia’s albedo (0.13 at α=5°)

  26. Albedo variation up to 30% Baetica Achaia (Sierks et al., 2011, Science 334, 487)

  27. Surface age: 100 Ma-3.6Ga by S. Marchi (OCA)

  28. Herschel-Mach11 (O'Rourke et al.)

  29. Vernazza et al. (2011) similarity to estatite chondrite two major problems on theiranalysis: - they look onlyat one spectrum (V+NIR taken by the ground) - to interpret the spectrum of Spitzer (FIR), theyused an ad hoc comparison (KBr-diluted) withdifferent grain of EC • Vernazza et al. (2011) Icarus 216, 650

More Related