1 / 44

Jet Tomography of the Gluon Plasma at RHIC

Jet Tomography of the Gluon Plasma at RHIC. nucl-th/0106072. QCD Motivation for A+A. Global Observables dN/dyd 2 p T , dE T /dyd 2 p T. Jet Quenching. Jet Tomography. 2/11/02 Iowa State. Miklos Gyulassy (Columbia Univ). RHIC Complex. 3.83 km circ. collider 6 intersection regions

brigid
Télécharger la présentation

Jet Tomography of the Gluon Plasma at RHIC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Jet Tomography of the Gluon Plasma at RHIC nucl-th/0106072 • QCD Motivation for A+A • Global Observables dN/dyd2pT, dET/dyd2pT • Jet Quenching • Jet Tomography 2/11/02 Iowa State Miklos Gyulassy (Columbia Univ) M.Gyulassy

  2. RHIC Complex • 3.83 km circ. collider • 6 intersection regions • 4 Experiments • p+p, p+A, A+B • Energy: • 500 GeV for p-p • 200 GeV for Au-Au(per N-N collision) • Luminosity • Au-Au: 2 x 1026 cm-2 s-1 • p-p : 2 x 1032 cm-2 s-1(polarized) 6 3 5 1’ 4 1 2 M.Gyulassy

  3. Approximate Boost invariance Si28 Ecm~100 AGeV Ag107 1050 M.Gyulassy

  4. Rapidity and Proper Time Coordinates Bjorken: Boost Invariance=> DV = t Dy pR2 ~ 1D “Hubble” Expansion M.Gyulassy

  5. Lattice QCD vs Ideal (Stefan-Boltzmann) Pressure Because QCD is Asymptotically Free JACEE ? F. Karsch et al M.Gyulassy

  6. QCD Equation of State De~ 10-27 GeV/fm3 De~ 1 GeV/fm3 JACEE ? Lattice QCD, MILC 97 Bag Model E/VT4 3P/T4 T (GeV = 1013 K) M.Gyulassy

  7. Mini-Bang at RHIC Au+Au 130AGeV How can we relate AA Experimental data to dense QCD Dynamics and Thermodynamics?? Nhadrons~4000 M.Gyulassy

  8. Ions Approach t=-15 fm/c M.Gyulassy

  9. Creation of Matter t=5 fm/c ?Quark GluonPlasma ? M.Gyulassy

  10. Color White Hadronization t=10 M.Gyulassy

  11. Global Constraints onInitial Conditions at RHIC Gluon Showers Soft vs Hard QCD Dynamics M.Gyulassy

  12. Au197+ Au197--> ~5000 Ecm~200 AGeV SPS Si+Ag Npart Participating nucleons BRAHMS/RHIC 2001 700 5% 10% 20% dN/dy » 1.15 dN/dh b M.Gyulassy

  13. dE/dx=2 GeV/fm No Jet Quenching Global Evidence for Gluon Showers at RHIC? X.N. Wang, MG, PRL86(01)3496 EKRT STAR PHENIX BRAHMS soft physics M.Gyulassy

  14. Two Component Models • Soft Beam Jet Fragmentation • (string phenomenology, LUND, DPM) Npart(b)/2 X u ud ud u 2)Hard pQCD pT>p0(Pythia) x TAB(b) 3=1+2) Hard pQCD Hadronized by Strings u ud (HIJING) ud u A4/3 A1 M.Gyulassy

  15. HIJING P0=2GeV XN Wang, MG Soft+Hard Dynamics in p+p HIJING= TAB(b)X [pQCD pt>p0]Pythia + Npart(b)X[Beam Jet Strings]LUND,DPM M.Gyulassy

  16. g Nbinary Gluon Shadow g Jet Quenching PHENIX 01 Beam Jets u ud Npart/2 u ud PHOBOS BRAHMS XN Wang, MG P0=2GeV M.Gyulassy

  17. XNWang, MG, PRL86(01)3496 PRL87:052301,2001 200 AGeV BRAHMS Initial Conditions from Centrality Dependence of dNch/dh Npart dNg(pT>2)/dy=200 HIJING ” rglue (t0=0.1 fm/c) » 10/fm3 dNg(pT>1)/dy=1000 EKRT ” rglue (t0=0.2 fm/c) » 25/fm3 M.Gyulassy

  18. Jet Quenching Collective Flow STAR nucl-ex/0104006 PHENIX: nucl-ex/0109003 High pT Frontier at RHIC Four New Phenomena Discovered M.Gyulassy

  19. Jets Vacuum QGP Rare Probes of Heavy Ion Collisions “Pio”sphere • Hard pQCD Probes: • Drell-Yan • Heavy Quarks (D, Y) • Direct g • Jets, high pT hadrons Z • Observables • dE/dx in QGP  jet quenching • Deconfinement J/y suppression beams of hard probes: jets, J/y …. Jet Quenching can be used as a Tomographic Tool M.Gyulassy

  20. Jet Tomography, GLVW jet g g g A+A Tomography with Jets X-ray Tomography M.Gyulassy

  21. Jet Energy Loss and Tomography 1. GLV Formalism : P.Levai, I.Vitev,MG ``Non-Abelian energy loss at finite opacity,'‘ Nucl. Phys. B571 (2000) 197; Phys. Rev. Lett. 85, 5535 (2000) Nucl. Phys. B594, 371 (2001) ; nucl-th/0112071, nucl-th/0201078 2. Flavor Tomography: P.Levai, G.Papp, G.Fai, MG, ``Kaon and pion ratio probes of jet quenching '' nucl-th/0012017. “The pbar>pi- Anomaly at RHIC” I.Vitev, MG nucl-th/0104066 3. Azimuthal Tomography: I.Vitev,X.N.Wang,P.Houvonin,MG ``High pT azimuthal asymmetry in non-central A + A at RHIC,'' Phys.Rev.Lett.86:2537 (2001); Phys.Lett.B526:301(2002 ) Baier, Dokshitzer, Mueller, Schiff 1996- B.G.Zakharov 1996- U. Wiedemann 2000 M.Gyulassy

  22. pQCD Known initial flux of q and g jets M.Gyulassy

  23. MG, I Vitev, XN Wang, Phys.Rev.Lett.86:2537-2540,2001 M.Gyulassy

  24. Discovery Jet Quenching at RHIC Au +Au -> p0 + X at Ecm= 130 AGeV Gabor David QM01 pQCD X TAB(b) PHENIX Central 10% PHENIX Peripheral80-95% M.Gyulassy

  25. WA98 PbPb ->p0 160 AGeV In p+A Cronin pQCD X TAB(b) Pions alone p All charged hadrons p + K + p PHENIX: Phys.Rev.Lett.88:022301 (2002) M.Gyulassy

  26. Central/Peripheral PHENIX M.Gyulassy

  27. X.N.Wang Npart/2Nbin 4 A A Compare to Enhancement of High pT at CERN-SPS Pb-Pb • RAA exhibits amplified Cronin Enhancement at SPS energies RAA» (RpA )2 • Parton energy lossis overwhelmed by initial state soft multiple collisions at SPS! *dE/dx is small at SPS due to short plasma lifetime and low gluon density MG, Levai, Vitev, PRL85(00)5535 M.Gyulassy

  28. How to extract gluon plasma density from Jet QuenchingPattern? M.Gyulassy

  29. Quenched pQCD M.Gyulassy

  30. Bjorken expansion Asymptotic Leading Log Approx GLV Opacity Expansion in LLA same as BDMS (mod Log E/m2L) Scaling Expansion For Bjorken 1+1D Expansion Transport Property Baier, Dokshitzer, Mueller, Schiff 1996 B.G.Zakharov 2000 U. Wiedemann 2000 M.Gyulassy

  31. GLV vs LLA Debye screened g eff. g mass g g and g g g LLA Finite Ejet<20 GeV cannot be computed in leading log But can be computed numerically via GLV M.Gyulassy

  32. Predicted Quench Pattern (GVW) M.Gyulassy

  33. M.Gyulassy

  34. High pT BaryonDynamics at RHIC Pbar > p - for pT>2 GeV/c ?? S.Vance,MG Gluonic Junctions ? M.Gyulassy

  35. Ivan Vitev, MG, nucl-th/0104066 Hydro pQCD Surprise: pbar > p- at high pT??? F. Messer, PHENIX J.Velkovska, PHENIX • Factor ~3 Quench of Pions • Possible novel baryon (junction) dynamics at high pT? S.Vance,MG M.Gyulassy

  36. Veneziano,Rossi Baryon Junctions Meson = u u u u Baryon = Junction Baryon = Junction d d • Baryon transport dynamics (baryon junction) in rapidity y Kharzeev S.Vance,MG • We also expect enhanced pT slopes for • baryons from M.Gyulassy

  37. Anomalous pbars Suppose there is a novel TB=400 MeV “Soft” B Component Vitev,MG M.Gyulassy

  38. Charged Hadron versus Pion Quenching PHENIX data STARdata • Both STAR and PHENIX data are consistent with a factor of 2-3 suppression • of the high pT particle spectra. • The difference in the suppression of and inclusive charged hadrons can • be understood in a dual soft+hard model with baryon transport dynamics. • The extracted gluon rapidity density is dNg/dy~1000. M.Gyulassy

  39. Azimuthal asymmetry of high pt particles *Finite dE/dx” v2(pt)™ 0forpt™ ¥ * f Solid: cylindrical geom Dasned: Wood Sax TAB Raimond Snellings MG, I. Vitev and X.N. Wang, PRL(01) M.Gyulassy

  40. pT Barrel Plot CRAB NCG6571 pT pT 4 GeV V2 = 0 V2 = 0.2 Azimuthal Symm. Azimuthal Asymm. At RHIC M.Gyulassy

  41. Summary • Global dN/dy( s,Npart ) are consistent with copious gluon showers 200<dNg/dy<1000 • Factor ~3 Suppression of pT>2GeV pions Tomography via Jet Quench => dNg/dy~1000 • New baryon transport dynamics revealed byp+/p+ & p-/p- >1 at Dy~5, DpT~3 GeV • Large 2 to 1 azimuthal asymmetry observed out to pT~ 6GeV! • Need higher pT data and p+A to confirm tomographic analysis => rglue~100 X rnuke reached at RHIC • Major Puzzles • Hydro works too well for pT<2GeV but STAR/PHENIX pp HBT inconsistent with Hydro and all current QGP tranport models: Rout=Rside=6fm indep of 1<Ecm<100! • dET/dNch independent of Ecm and Npart • Why v2 does not decrease with pT? M.Gyulassy

  42. Jet quenching at RHIC (200 AGeV) versus LHC (5400 AGeV) • Increased quenching by a factor of • ~3 in the overlapping region • (roughly following the density) • ModeratepT dependence of the • quenching factor M.Gyulassy

  43. Additional Effects that Influence E-Loss • Absorption effects – shown • to be negligible for E.Wang, X.N. Wang, PRL 87, 142301 (2001) (E-loss with detailed balance) • Multi-gluonfluctuations Q: is the difference between mean energy loss and multi-gluon fluctuations tractable M.Gyulassy, P.Levai, I.V. nucl-th/0112071 M.Gyulassy

  44. Similar shape of the spectrum • Constantdensity renormalization • factror 1/Z=2-2.5 in a broad • pT>3 GeV range Additional Effects that Influence E-Loss • Include nuclear • shadowingfa/A(x,Q2). • Modification factor • taken as in HIJING • IncludekT smearingandCronin effect via • g(k) (assumed to be Gaussian) Same fit with Z~0.4-0.5!!! M.Gyulassy

More Related