1 / 35

Chapter 1 Charting the Heavens

Chapter 1 Charting the Heavens. 1.1 Our Place in Space. Earth is unique only because we live here Universe : totality of all space, time, matter, and energy. 1.1 Our Place in Space. Astronomy : study of the universe

brinly
Télécharger la présentation

Chapter 1 Charting the Heavens

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 1 Charting the Heavens

  2. 1.1 Our Place in Space • Earth is unique only because we live here • Universe: totality of all space, time, matter, and energy

  3. 1.1 Our Place in Space • Astronomy: study of the universe • Scales are very large: measure in light-years, the distance light travels in a year—about 10 trillion miles • Powers of 10 Video

  4. 1.1 Our Place in Space • This galaxy is about 100,000 light-years across:

  5. 1.2 Scientific Theory and the Scientific Method • Scientific theories: • Must be testable • Must be continually tested • Should be simple • Should be elegant • Scientific theories can be proven wrong, but they can never be proven right with 100% certainty.

  6. 1.2 Scientific Theory and the Scientific Method • Observation leads to theory explaining it • Theory leads to predictions consistent with previous observations • Predictions of new phenomena are observed. If the observations agree with the prediction, more predictions can be made. If not, a new theory can be made.

  7. 1.3 The “Obvious” View Simplest observation: Look at the night sky About 3000 stars visible at any one time; distributed randomly but human brain tends to find patterns

  8. 1.3 The “Obvious” View Group stars into constellations: Figures having meaning to those doing the grouping Useful: Polaris, which is almost due north Not so useful: Astrology, which makes predictions about individuals based on the star patterns at their birth

  9. 1.3 The “Obvious” View Stars that appear close in the sky may not actually be close in space

  10. 1.3 The “Obvious” View The celestial sphere: Stars seem to be on the inner surface of a sphere surrounding the Earth They aren’t, but can use two-dimensional spherical coordinates (similar to latitude and longitude) to locate sky objects

  11. More Precisely 1-1: Angular Measure • Full circle contains 360° (degrees) • Each degree contains 60′ (arc-minutes) • Each arc-minute contains 60′′ (arc-seconds) • Angular size of an object depends on actual size and distance away

  12. More Precisely 1-2: Celestial Coordinates • Declination: degrees north or south of celestial equator • Right ascension: measured in hours, minutes, and seconds eastward from position of Sun at vernal equinox • Rotating Sky Explorer • Houston: 29.5°N 95°W

  13. 1.4 Earth’s Orbital Motion • Daily cycle, noon to noon, is diurnal motion —solar day • Stars aren’t in quite the same place 24 hours later, though, due to Earth’s rotation around Sun; when they are, one sidereal day has passed • Difference between one and the other

  14. 1.4 Earth’s Orbital Motion Seasonal changes to night sky are due to Earth’s motion around Sun

  15. 1.4 Earth’s Orbital Motion 12 constellations Sun moves through during the year are called the zodiac; path is ecliptic Ophiuchus is "13th" sign of the zodiac

  16. 1.4 Earth’s Orbital Motion • Ecliptic is plane of Earth’s path around Sun; at 23.5° to celestial equator • Northernmost point (above celestial equator) is summer solstice; southernmost is winter solstice; points where path cross celestial equator are vernal and autumnal equinoxes • Combination of day length and sunlight angle gives seasons • Time from one vernal equinox to next is tropical year Motion of sun simulator

  17. 1.4 Earth’s Orbital Motion Precession: rotation of Earth’s axis itself; makes one complete circle in about 26,000 years

  18. 1.4 Earth’s Orbital Motion Time for Earth to orbit once around Sun, relative to fixed stars, is sidereal year Tropical year follows seasons; sidereal year follows constellations—in 13,000 years July and August will still be summer, but Orion will be a summer constellation

  19. 1.5 Astronomical Timekeeping Solar noon: when Sun is at its highest point for the day Drawbacks: length of solar day varies during year; noon is different at different locations

  20. 1.5 Astronomical Timekeeping Define mean (average) solar day—this is what clocks measure. Takes care of length variation. Also define 24 time zones around Earth, with time the same in each one and then jumping an hour to the next. Takes care of noon variation.

  21. 1.5 Astronomical Timekeeping World time zones

  22. 1.5 Astronomical Timekeeping Lunar month (complete lunar cycle) doesn’t have whole number of solar days in it, and tropical year doesn’t have whole number of months Current calendar has months that are close to lunar cycle, but adjusted so there are 12 of them in a year

  23. 1.5 Astronomical Timekeeping • Year doesn’t quite have a whole number of solar days in it—leap years take care of this. • Add extra day every 4 years • Omit years that are multiples of 100 but not of 400 • Omit years that are multiples of 1000 but not of 4000 • This will work for 20,000 years.

  24. 1.6 Motion of the Moon Moon takes about 29.5 days to go through whole cycle of phases—synodic month Phases are due to different amounts of sunlit portion being visible from Earth Time to make full 360° around Earth, sidereal month, is about 2 days shorter

  25. 1.6 Motion of the Moon Eclipses occur when Earth, Moon, and Sun form a straight line

  26. 1.6 Motion of the Moon • Lunar eclipse: • Earth is between Moon and Sun • Partial when only part of Moon is in shadow • Total when it all is in shadow

  27. 1.6 Motion of the Moon • Solar eclipse: Moon is between Earth and Sun • Partial when only part of Sun is blocked • Total when it all is blocked • Annular when Moon is too far from Earth for total

  28. 1.6 Motion of the Moon Eclipses don’t occur every month because Earth’s and Moon’s orbits are not in the same plane

  29. 1.7 The Measurement of Distance Triangulation: Measure baseline and angles, can calculate distance

  30. 1.7 The Measurement of Distance Parallax: Similar to triangulation, but look at apparent motion of object against distant background from two vantage points

  31. 1.7 The Measurement of Distance Measuring Earth’sradius: Done by Eratosthenes about 2300 years ago; noticed that when Sun was directly overhead in one city, it was at an angle in another. Measuring that angle and the distance between the cities gives the radius.

  32. More Precisely 1-3: Measuring Distances with Geometry Converting baselines and parallaxes into distances

  33. More Precisely 1-3: Measuring Distances with Geometry Converting angular diameter and distance into size

  34. Summary of Chapter 1 • Astronomy: Study of the universe • Scientific method: Observation, theory, prediction, observation, … • Stars can be imagined to be on inside of celestial sphere; useful for describing location • Plane of Earth’s orbit around Sun is ecliptic; at 23.5° to celestial equator • Angle of Earth’s axis causes seasons • Moon shines by reflected light, has phases

  35. Summary of Chapter 1 (cont.) • Solar day ≠ sidereal day, due to Earth’s rotation around Sun • Synodic month ≠ sidereal month, also due to Earth’s rotation around Sun • Tropical year ≠ sidereal year, due to precession of Earth’s axis • Eclipses of Sun and Moon occur due to alignment; only occur occasionally as orbits are not in same plane • Distances can be measured through triangulation and parallax

More Related