1 / 17

Shaking Entanglement: Teleportation in Relativistic Motion

Shaking Entanglement: Teleportation in Relativistic Motion. Antony Richard Lee In collaboration with RQI Group University of Nottingham. LOOPS 13 – Perimeter Institute – July 2013. Shaking Entanglement: Teleportation in Relativistic Motion. Introduction Motivation RQI Objectives

brita
Télécharger la présentation

Shaking Entanglement: Teleportation in Relativistic Motion

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Shaking Entanglement:Teleportation in Relativistic Motion Antony Richard Lee In collaboration with RQI Group University of Nottingham LOOPS 13 – Perimeter Institute – July 2013

  2. Shaking Entanglement: Teleportation in Relativistic Motion • Introduction • Motivation • RQI • Objectives • Framework • QFT • Bogoliubov transformations • Gaussian states • Teleportation • Method • Result • Conclusions • Outlook • Future directions • Summary • Introduction • Motivation, relativistic quantum information, experiments • Framework • QFT, Bogoliubov transformations, Gaussian QI, motion in spacetime • Teleportation • Description, our angle, results • Conclusions • Brief recap and future directions Antony Richard Lee – UoN – Loops 13

  3. Shaking Entanglement: Teleportation in Relativistic Motion • Introduction • Motivation • RQI • Objectives • Framework • QFT • Bogoliubov transformations • Gaussian states • Teleportation • Method • Result • Conclusions • Outlook • Future directions • Introduction • Motivation • How does relativistic principles and quantum information influence each other? • Relativistic Quantum Information • Current attempt at implementing QI protocols and tools in a QFT setting • Objectives • Produce a framework which can guide us to new protocols which cannot exist without both relativity and QI. Antony Richard Lee – UoN – Loops 13

  4. Shaking Entanglement: Teleportation in Relativistic Motion • Introduction • Motivation • RQI • Objectives • Framework • QFT • Bogoliubov transformations • Gaussian states • Teleportation • Method • Result • Conclusions • Outlook • Future directions • Canonical Quantum Field Theory • Field equation (1+1 scalar field) • Second Quantisation • Commutation and inner product relations • Different basis? Antony Richard Lee – UoN – Loops 13

  5. Shaking Entanglement: Teleportation in Relativistic Motion • Introduction • Motivation • RQI • Objectives • Framework • QFT • Bogoliubov transformations • Gaussian states • Teleportation • Method • Result • Conclusions • Outlook • Future directions • Bogoliubov transformations • Field expansion • Relation between mode bases • Bogoliubov coefficients Antony Richard Lee – UoN – Loops 13

  6. Shaking Entanglement: Teleportation in Relativistic Motion • Introduction • Motivation • RQI • Objectives • Framework • QFT • Bogoliubov transformations • Gaussian states • Teleportation • Method • Result • Conclusions • Outlook • Future directions • Bogoliubov Transformations • Compactly written as • Satisfy the symplectic group definition • Link to quantum information? Antony Richard Lee – UoN – Loops 13

  7. Shaking Entanglement: Teleportation in Relativistic Motion • Introduction • Motivation • RQI • Objectives • Framework • QFT • Bogoliubov transformations • Gaussian states • Teleportation • Method • Result • Conclusions • Outlook • Future directions • Gaussian State Quantum Information • Define the vector of mode operators • Quantum state fully characterised by 1st and 2nd moments • Uses? • Experimental access, elegant mathematical description, underpinned by symplectic geometry Antony Richard Lee – UoN – Loops 13

  8. Shaking Entanglement: Teleportation in Relativistic Motion • Introduction • Motivation • RQI • Objectives • Framework • QFT • Bogoliubov transformations • Gaussian states • Teleportation • Method • Result • Conclusions • Outlook • Future directions • Gaussian State Quantum Information • State transformation under Bogoliubov transformation • 1st and 2nd moments • Example of a Gaussian state is the vacuum Antony Richard Lee – UoN – Loops 13

  9. Shaking Entanglement: Teleportation in Relativistic Motion • Introduction • Motivation • RQI • Objectives • Framework • QFT • Bogoliubov transformations • Gaussian states • Teleportation • Method • Result • Conclusions • Outlook • Future directions • Model the motion of a cavity via Bogoliubov transformations • quantifies proper acceleration • quantifies proper time Change back to previous type of observer Evolution under free Hamiltonian Change from one type of observer to another Antony Richard Lee – UoN – Loops 13

  10. Shaking Entanglement: Teleportation in Relativistic Motion • Introduction • Motivation • RQI • Objectives • Framework • QFT • Bogoliubov transformations • Gaussian states • Teleportation • Method • Result • Conclusions • Outlook • Future directions Revert back to previous type of observer Acceleration Evolution under free Hamiltonian Inertial Change to new type of observer Antony Richard Lee – UoN – Loops 13

  11. Shaking Entanglement: Teleportation in Relativistic Motion • Introduction • Motivation • RQI • Objectives • Framework • QFT • Bogoliubov transformations • Gaussian states • Teleportation • Method • Result • Conclusions • Outlook • Future directions Antony Richard Lee – UoN – Loops 13

  12. Shaking Entanglement: Teleportation in Relativistic Motion • Introduction • Motivation • RQI • Objectives • Framework • QFT • Bogoliubov transformations • Gaussian states • Teleportation • Method • Result • Conclusions • Outlook • Future directions Alice – Bob entangled state Bob’s state Unknown state Antony Richard Lee – UoN – Loops 13

  13. Shaking Entanglement: Teleportation in Relativistic Motion • Introduction • Motivation • RQI • Objectives • Framework • QFT • Bogoliubov transformations • Gaussian states • Teleportation • Method • Result • Conclusions • Outlook • Future directions • Result • Fidelity • Perturbative result in • Periodic dependence on Antony Richard Lee – UoN – Loops 13

  14. Shaking Entanglement: Teleportation in Relativistic Motion • Introduction • Motivation • RQI • Objectives • Framework • QFT • Bogoliubov transformations • Gaussian states • Teleportation • Method • Result • Conclusions • Outlook • Future directions • Result • Fidelity • Non-uniform motion of Bob implies • Reduction in usable entanglement • Reduction in teleportation efficiency • Implications for communication technologies Antony Richard Lee – UoN – Loops 13

  15. Shaking Entanglement: Teleportation in Relativistic Motion • Introduction • Motivation • RQI • Objectives • Framework • QFT • Bogoliubov transformations • Gaussian states • Teleportation • Method • Result • Conclusions • Outlook • Future directions • Outlook • Flexible framework within symplectic geometry • Can give a concrete setting to analyse quantum information within QFT • Has possible implications for communication over long distances and in a gravitational field • Papers • D. E. Bruschi, I. Fuentes and J. Louko, Phys. Rev. D 85, 061701(R) (2012) • N. Friis, A. R. L, K. Truong, C. Sabín, E. Solano, G. Johansson and I. Fuentes, Phys. Rev. Lett. 110, 113602 (2013) Antony Richard Lee – UoN – Loops 13

  16. Shaking Entanglement: Teleportation in Relativistic Motion • Introduction • Motivation • RQI • Objectives • Framework • QFT • Bogoliubov transformations • Gaussian states • Teleportation • Method • Result • Conclusions • Outlook • Future directions • Future Directions • Use of symplectic geometry in QG + QI? • Information, entropy, correlations and LQG? • Black hole information paradox, firewall problem? Antony Richard Lee – UoN – Loops 13

  17. Thanks!

More Related