1 / 23

ANALYTIC FUNCTION S.KARTHIK ASSISTANT PROFESSOR MATHEMATICS, MSEC

ANALYTIC FUNCTION S.KARTHIK ASSISTANT PROFESSOR MATHEMATICS, MSEC. ANALYTIC FUNCTION. A single valued function which is defined and differentiable at each point of a domain D is said to be analytic in that domain.

ccrowley
Télécharger la présentation

ANALYTIC FUNCTION S.KARTHIK ASSISTANT PROFESSOR MATHEMATICS, MSEC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ANALYTIC FUNCTIONS.KARTHIKASSISTANT PROFESSORMATHEMATICS, MSEC

  2. ANALYTICFUNCTION • Asinglevaluedfunctionwhichisdefinedanddifferentiable at each point of a domain D is said to be analytic in that domain. • A function is said to be analytic at a point if its derivative existsnotonlyatthatpointbutinsomeneighbourhoodof thatpoint. • Thepointwherethefunctionisnotanalyticiscalleda singular point of thefunction.

  3. Notes • Letf(z)andg(z) beanalyticfunctionsinsomedomainD; • f (z)g(z) and f(z).g(z) are analytic functions inD. (ii) f(z) isanalyticinDexceptwhereg(z)=0. g(z) (iii) f[g(z)]andg[f(z)]areanalyticfunctionsinD.

  4. 2z is notanalytic? Example-1:Statewherethefunctionf(z) z21 Solution:-f(z) isnotanalyticatziasthefunctionisnotdefinedatthese points. Hence, the points z i are singularpoints. z2 1 Example-2: State where the function f (z) (z2)(z2 isnot 2z2) analytic? Solution:-Thefunctionisnotanalyticatthepoints z2 and 2z20 z20 and z 2 z 2 481i 2

  5. CAUCHY-RIEMANN PARTIAL DIFFERENTIAL EQUATIONS Theorem:If afunctionf(z)=u(x,y) +iv(x,y)isanalyticatanypointz= x+iy, then the partial derivatives ux , uy , vx , vy should exist and satisfythe or u v , u v equations ux =vy , uy =-vx x y y x Proof:Letf(z)beananalyticfunctionatanypointz. lim z 0 f(zz)f(z) z exist f '(z) lim z 0 (uu)i(vv)(uiv) z Now f '(z) lim u iv z 0 z …..(1) 

  6. CAUCHY-RIEMANN PARTIAL DIFFERENTIAL EQUATIONS Forequation(1)limitexistalonganypathasz0.Considerthepathalongreal axis(z=x). z0x0 from(1), lim u iv x0 x f '(z) u iv x x ….(2) Now consider the path along y axis i.e.z=iy z0y0 from(1), lim u ivi u v f '(z) ….(3) y0iy yy

  7. CAUCHY-RIEMANN PARTIAL DIFFERENTIAL EQUATIONS Itisobviousthatthelimits(2)and (3)aresame. uiviuv x x y y ux vy uy vx and

  8. Example 3 : Use C-R equation concept to find derivative of f (z) z 2. Solution:-Wehave f (z) z2 x2 y2 i2xy u(x,y)x2y2,v(x,y)2xy ux 2x vy and uy 2 y vx So, C-R equations are satisfied everywhere inz-plane. f '(z) exists everywhere. Thus weget f'(z)uxivxvyiuy2xi2y2z Example 4 :Show that neither f (z) z nor f (z) z is an analyticfunction. Solution:-We have f (z) z x iy u(x,y)x,v(x,y)y ux 1, uy 0, vx 0, vy 1 ux vy So, C-R equation is notsatisfied. f (z)z is notanalytic.

  9. Continue… Now f (z) zx2 y2 u(x, y) x2y2,v(x,y)0 x u ,v 0 u v x y x y x2 y2 So, C-R equation is notsatisfied. is notanalytic. f (z)z x iy dw isananalyticfunction,find .  Example 5 : Show that w x2 x2 y2 y2 dz Solution:-Wehave, u x y ,v x2 y2 x2 y2 2xy y 2 x2 v   x (x2 y2)2 ux (x2 y 2 )2, y 2 x2 2xy uy (x2 y2 )2, vy (x2 y 2)2 uxvyand . So, w isanalytic. uy vx

  10. Continue… Now, dw ux ivx dz y2x2 2xy   (x2 y2)2 i (x2 y2)2 Example 6 :Check whether the following functions are analytic or not at anypoint: (a)f(z)ez(b)f(z)2xixy2. Solution:- (a) we have f (z) ez exiy ex(cos yisiny) u excosy, v ex siny, u ex cosy, v excosy x y ux vy f (z) ez is not analyticanywhere. (b)Wehave f(z)2xixy2 v xy2 u 2x, ux 2, isnot ux vy f(z)2xixy2 v 2xy analyticanywhere. y

  11. Solution:-Let z0 be any point in thedomain. Example 7 :Examine the analyticity of sinhz. lim z z0 lim z z0 f (z)f (z0 )  sinhzsinhz0  z z0 z z0 z z z z    2cosh sinh 0 0     lim z z0 lim 2 2     z z0 z z   sinh 0   lim z z 2   cosh0 z z0 z z0 2 z z0   2   coshz0 f '(z) exist at any pointz. isanalytic. f(z)

  12. f(z)sinhzsinh(xiy) Continue…. OR Wehave cosysinhxisinycoshx u(x,y)cosysinhx, uxcosycoshx, uy sin y sinhx, v(x,y)sinycoshx vycosycoshx vxsinysinhx, ux vy uy vx and So,C-Requationissatisfiedforanypoint. So, f(z) is analyticfunction.

  13. POLAR FORM OF C.R.EQUATIONS xrcos,yrsin Wehave rx2 y2 ,tan1y x  u 1 v , 1 u v r rr are C-R equations in polarform. r and f'(z)eiuiv r r  

  14. Harmonic Function & Conjugate harmonic function Harmonic Function:-Afunction (x,y)issaidtobeharmonicina domain Dif (1) (x, y) Satisfy Laplace’s equation xx yy 0 and arecontinuousfunctionsofxandyinD. (2)xx,xy,yy Conjugate harmonic function:-If f(z)=u+iv is an analytic functionof z, then v is called a conjugate harmonic function of u and u in its turn is termed a conjugate harmonic function of v. Or u and v are called conjugate harmonicfunctions.

  15. Example8 :Isthefunctionu=xsinxcoshy-cosxsinhyharmonic? Solution:-Wehave uxsinxcoshyycosxsinhy uxsinxcoshyxcosxcoshyysinxsinhy uxxcosxcoshycosxcoshyxsinxcoshyycosxsinhy 2cosxcoshyxsinxcoshyycosxsinhy uyxsinxsinhycosxsinhyycosxcoshy uyyxsinxcoshycosxcoshycosxcoshyycosxsinhy xsinxcoshy2cosxcoshyycosxsinhy uxx uyy 0 also uxx,uxy,uyyarecontinuousfunctions. So, u is a harmonicfunction. And

  16. x Example 9 : Showthat isharmonic. u x2 • y2 x Solution:- Wehave u x2 • y2 y2 (x2 y2 )(1) x(2x) • x2 ux  (x2 y2)2 (x2 y2 )2 (x2y2)2(2x)(y2x2)2(x2y2)(2x) uxx (x2 y2)4 (x y)[(x y )(2x) 4x(y x)] 2 2 2 2 2 2 (x2 y2)4 2x3 2xy2 4xy2 4x3 2x3 6xy2 (x2 y2)3 (x2 y2)3 ….(1)

  17. Continue… 2xy uy (x2 y2)2 (x2y2)2(2x)(2xy)2(x2y2)2y uyy   (x2 y2)4  (x y )[(x y )(2x)8xy(x y)] 2 2 2 2 2 2 2 2 (x2 y2)4 [2x32xy28xy2]2x36xy2 …(2) (x2 y2)3 So, From equation (1) &(2), uxx uyy 0 (x2 y2)3 Alsouxx,uxy,uyyarecontinuousfunctions. So, u is a harmonicfunction.

  18. Example 10 : Determine a and b such that u ax3 bxy its conjugateharmonic. is harmonic andfind Solution:-Wehave u ax3 bxy ux3ax byu 6ax 2 xx uy bx uyy 0 since u is harmonicfunction, uxx uyy 0 6ax0a0 and b assumes anyvalue u bxy ux by, uy bx Now, dvvxdxvydy uydxuxdy bxdxbydy

  19. x2 y2 Continue… v b • b c 2 2 bx2 by 2 2   2 f(z)uivbxyic 

  20. Method of constructing a regularfunction Ifonlytherealpartofananalyticfunctionf(z)isgiventhen f(z)2uz,zu(0,0)ci 2 2i  wherecisarealconstant. z z 2 2i uz , z Replace xby and yby tofind 2 2i and put x=y=0 to find u(0,0)   inu(x,y)

  21. Example 11 :Find an analytic function f (z) uiv if u x3 3xy. Solution:-Wehave u x3 3xy z3 z z 3 z3 z z u, 3 z2i   2 2i 8 4 222i andu(0,0)=0 f(z)2uz,zu(0,0)ci 2 2i   z3 3 4 2 2 f (z) z i ci

  22. Example12 :Show that the function u x2 y2 x corresponding analyticfunction. is harmonic and findthe u x2 y2 x Solution:-Wehave ux 2x 1uxx 2 uy2yuyy2 uxx uyy 0 So, u isharmonic. z2 z2 z2 z z 22i44222 z z Now, u,  u(0,0) 0 f(z)2uz,zu(0,0)ciz2zci 2 2i  

More Related