1 / 91

Flat Radio Sources

Flat Radio Sources. Almost every galaxy hosts a BH. 99% are silent 1% are active 0.1% have jets. No lobes. Radio lobes. Broad emission lines. No or weak lines emission lines. Weak FRI radio-galaxy. Powerful FRII radio-galaxy. Radio-galaxies & Blazars.

chill
Télécharger la présentation

Flat Radio Sources

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Flat Radio Sources

  2. Almost every galaxy hosts a BH 99% are silent 1% are active 0.1% have jets

  3. No lobes Radio lobes Broad emission lines No or weak lines emission lines Weak FRI radio-galaxy Powerful FRII radio-galaxy

  4. Radio-galaxies & Blazars FR II poweful radio galaxy, with lobes FSRQs= Flat Spectrum Radio Quasars, with broad lines BL Lacs= less powerful, no broad lines FR I: weak radio galaxy, no lobes 102-103 Rs

  5. Radio VLBI Optical HST Superluminal motion

  6. Blazars: phenomenology

  7. Blazars: Spectral Energy Distribution Radio IR Opt UV X MeV GeV Inverse Compton (also possible hadronic models) Synchro

  8. The“blazarsequence” FSRQs CT BL Lacs LBL and HBL AGILE GLAST Fossati et al. 1998; Donato et al. 2001

  9. EGRET: ~100 blazars Cherenkov: ~40 blazars (a few Radiogal) Gamma-ray blazars Fermi The Universe becomes opaque at z~0.1 at 1TeV at z~2 at 20 GeV HESS+ MAGIC

  10. 9 years of EGRET (0.1-10 GeV) Fermi first light, 96 hrs of integration After 11 months: ~700 (blazars, FSRQsand BL Lacs in equal number) A few radiogalaxies 4 NLSy1 Starburst galaxies

  11. Blazars: emission models

  12. Coordinated variability at different n Mkn 421 TeV PDS MECS LECS

  13. BL Lacs: low power, no lines

  14. TeV BL Lacs Fermi 1 yr 5s Tagliaferri et al. + MAGIC, 2008

  15. No BLR No IR Torus Weak cooling Large g G~ 3 G~50 ADAF? L< 10-3 LEdd?

  16. Emission Models Simplest scenario: SSC model No external radiation

  17. Log N(g) g-n1 gb Log g Log nL(n) ns n-a1 n-a2 Log n The simplest model R g-n2 B G e q

  18. Log N(g) Log Usyn(n) + gb n1 n’ s a1 n2 a2 Log g Log n Log nL(n) ns nC a1 a1 a2 a2 Log n The simplest model

  19. Log N(g) Log Usyn(n) gb n1 n’ s a1 n2 a2 Log g Log n Log nL(n) nC ns a1 aKN a1 a2 Log n The simplest model + “Klein-Nishina regime” h n’ s g b >mec2

  20. SSC model: constraining the parameters In the simplest version of the SSC model, all the parameters can be constrained by quantities available from observations: 7 free parameters Model parameters: R B Nogb n1 n2 d Observational parameters: ns LsnC LC tvar a1 a2 7 observational quantities Tavecchio et al. 1998

  21. K K2

  22. d4 d4 d d

  23. FSQRs: high power, strong broad emission lines

  24. SX 104 s Data: Fabian+ 2001

  25. 1/2 1/2 RBLR ~ Ldisk  UBLR= const RTorus~ Ldisk  UIR= const LB ~ B2R2G2c= const  B~1/(RG) Torus ~1-10 pc BLR ~0.2 pc

  26. Torus ~1-10 pc ? ? BLR ~0.2 pc

  27. Importance of g-rays If blob too close to disk, or too compact, AND if emits g-rays, then many pairs If blob too large (too distant) tvar too long Then: Rdiss ~ 1000 RS Energy transport in inner jet must be dissipationless

  28. gb = 103gmax= 104Rdiss= 20Rs G = 10 disk corona torus

  29. Log N(g) n’o gb n1 n2 G2 G Log g Log nF(n) ns nC a1 a1 a2 a2 Log n The simplest model - 5 Log nUext(n) Broad line region, Disk + no Log n

  30. The simplest model - 6 EC + SSC 3C 279 Ballo et al. 2002 B =0.6 - 0.5 d = 17.8- 12.3 gb =550 - 600

  31. A text-book jet Torus ~8 pc CMB • B propto 1/R • n propto 1/R2 • M=109Mo • Ldisk~LEdd • z=3 BLR ~0.3 pc

  32. 1 SX 105 s 0.1 pc 1

  33. 2 1 pc 2

  34. 3 10 pc 3

  35. 4 100 pc 4

  36. 5 1 kpc 5

  37. 10 kpc 6 6

  38. 100 kpc 7 7

  39. n0 SX 105 s 100 kpc 7 10 kpc 6 1 kpc 5 100 pc 4 10 pc 3 2 1 pc 0.1 pc 1

  40. n0 SX 105 s 100 kpc 7 10 kpc 6 Peak at ~ 100-500 keV Hard X-rays and GeV: same component (tvar~0.5-1 day) Soft X-rays: contributions from larger regions, but within 10 pc (tvar<2.5 months) 1 kpc 5 100 pc 4 10 pc 3 2 1 pc 0.1 pc 1

  41. Fossati et al. 1998; Donato et al. 2001

  42. By modeling, we find physical parameters in the comoving frame. gpeak is the energy of electrons emitting at the peak of the SED EGRET blazars Ghisellini et al. 1998

  43. Low power slow cooling large gpeak Big power fast cooling small gpeak

  44. g-ray emission from non-blazar AGNs Only one non–blazar AGNs is known at VHE band: the radiogalaxy M87

  45. Emission region? Large scale jet Stawarz et al. 2003 Knot HST-1 (60 pc proj.) Stawarz et al. 2006 Cheung et al. 2007 Misaligned (20 deg) blazar Georganopoulos et al. 2005 Lenain et al. 2007 FT and GG 2008 BH horizon Neronov & Aharonian 2007 Rieger & Aharonian 2008

  46. Core? Acciari et al. 2008

  47. spine layer Ghisellini Tavecchio Chiaberge 2005 Tavecchio & Ghisellini 2008

  48. More seed photons for both • Grel= GlayerGspine(1-blayerbspine) • The spine sees an enhanced Urad coming from the layer • Also the layer sees an enhanced Urad coming from the spine The IC emission is enhanced wrt to the standard SSC model

  49. BL Lac Radiogalaxy

  50. Misaligned structured blazar jet FT and GG 2008

More Related