1 / 41

Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates. Michael J. Krische Presented by Louis-Philippe Beaulieu Université de Montréal April 7 th 2009. 1. Michael J. Krische: Biographical Information.

clover
Télécharger la présentation

Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates • Michael J. Krische • Presented by • Louis-Philippe Beaulieu • Université de Montréal • April 7th 2009 1

  2. Michael J. Krische: Biographical Information Obtained a B.S. degree in chemistry from the University of California at Berkeley under the supervision of Professor Henry Rapoport. He received his Ph.D. in 1996 under the mentorship of Professor Barry Trost and he studied with Jean-Marie Lehn at the Université Louis Pasteur as a post-doctoral fellow. In 1999, he was appointed Assistant Professor at the University of Texas at Austin. He was Promoted to Full Professor in 2004, and was awarded the Robert A. Welch Chair in 2007. Selected awards include the Tetrahedron Young Investor Award (2009), Novartis Lectureship Award (2008), Elias J. Corey Award (2007) and Dreyfus Teacher Scholar Award (2003). 2

  3. Formation of C-C Bonds via Catalytic Hydrogenation and Transfer Hydrogenation: General concept Homolytic activation of H2 to form a high-valent dihydride Conventional reduction C-C bond formation Heterolytic activation of H2 to form a low-valent monohydride 3

  4. Formation of C-C Bonds via Catalytic Hydrogenation and Transfer Hydrogenation: General concept Ngai, M. Y.; Kong, J. R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063-1072. Skucas, E.; Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 7242-7243. 4

  5. Tenets of Green Chemistry Quantity of product isolated Theoretical quantity of product • Atom economy: Reaction yield = x 100% MW of desired product MW of all products Atom economy= x 100% • Synthesis without protections • Development of tandem and cascade reactions • Use of environmentally bening solvents Li, C. J.; Trost, B. M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 13197-13202. Baran, P. S.; Maimone, T. J.; Richter, J. M. Nature (2007, 446, 404-408. 5

  6. Historical and Industrial Perspective of Catalytic Hydrogenation 6

  7. Hydrogen-Mediated Reductive Aldol Coupling Stereospecific Z(O)-enolate formation Stereochemical model (Z)-enolate, Zimmerman-Traxler-type transition state Jang, H. Y.; Huddleston, R. R.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 15156-15157. 7

  8. Hydrogen-Mediated Reductive Aldol Coupling Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. 1976, 98, 2134-2143. 8

  9. Hydrogen-Mediated Reductive Aldol Coupling a 10 mol% of Li2CO3 Jung, C. K.; Garner, S. A.; Krische, M. J. Org. Lett. 2006, 8, 519-522. 9

  10. Hydrogen-Mediated Reductive Aldol Coupling Jung, C. K.; Garner, S. A.; Krische, M. J. Org. Lett. 2006, 8, 519-522. Ngai, M. Y.; Kong, J. R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063-1072. 10

  11. Hydrogen-Mediated Reductive Aldol Coupling: Enantioselective Version Front view of [Rh(cod)(L)2]OTf omitting the methyl groups, triflate ion, and COD Bee, C.; Soo, B. H.; Hassan, A.; Iida, H.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 2746-2747. 11

  12. Hydrogen-Mediated Reductive Aldol Coupling Ngai, M. Y.; Kong, J. R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063-1072. 12

  13. Hydrogen-Mediated Reductive Aldol Coupling Huddleston, R. R.; Krische, M. J. Org. Lett. 2003, 5, 1143-1146. 13

  14. Hydrogen-Mediated Reductive Aldol Coupling Marriner, G. A.; Garner, S. A.; Jang, H. Y.; Krische, M. J. J. Org. Chem. 2004, 69, 1380-1382. 14

  15. Hydrogen-Mediated Conjugated Alkyne-Carbonyl Coupling Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16448-16449. 15

  16. Hydrogen-Mediated Conjugated Alkyne-Carbonyl Coupling Dewar-Chatt-Duncanson Model Jang, H. Y.; Krische, M. J. Acc. Chem. Res. 2004, 37, 653-661. 16

  17. Hydrogen-Mediated Conjugated Alkyne-Carbonyl Coupling Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16448-16449. 17

  18. Hydrogen-Mediated Conjugated Alkyne-Carbonyl Coupling Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16448-16449. Iida, H.; Krische, M. J. Top. Curr. Chem. 2007; 279, 77-104. 18

  19. Hydrogen-Mediated Conjugated Alkyne-Ethyl (N-Sulfinyl)iminoacetates Coupling Kong, J. R.; Cho, C. W.; Krische, M. J. J. Am. Chem. Soc. 2005, 127, 11269-11276. 19

  20. Hydrogen-Mediated Conjugated Alkyne-Ethyl (N-Sulfinyl)iminoacetates Coupling Kong, J. R.; Cho, C. W.; Krische, M. J. J. Am. Chem. Soc. 2005, 127, 11269-11276. 20

  21. Hydrogen-Mediated Conjugated Alkyne-Carbonyl Coupling Huddleston, R. R.; Jang, H. Y.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 11488-11489. 21

  22. Hydrogen-Mediated Conjugated Alkyne-Carbonyl Coupling Competition experiments reveal coupling to the strongest π-acid Jang, H. Y.; Krische, M. J. Acc. Chem. Res. 2004, 37, 653-661. 22

  23. Reductive Cyclization of 1,6-Enynesvia Rhodium-Catalyzed Asymmetric Hydrogenation:C−C Bond Formation Precedes Hydrogen Activation Jang, H. Y.; Hughes, F. W.; Gong, H.; Zhang, J.; Brodbelt, J. S.; Krische, M. J. J. Am. Chem. Soc. 2005, 127, 6174-6175. 23

  24. Reductive Cyclization of 1,6-Enynesvia Rhodium-Catalyzed Asymmetric Hydrogenation:C−C Bond Formation Precedes Hydrogen Activation Jang, H. Y.; Hughes, F. W.; Gong, H.; Zhang, J.; Brodbelt, J. S.; Krische, M. J. J. Am. Chem. Soc. 2005, 127, 6174-6175. 24

  25. Reductive Cyclization of 1,6-Enynesvia Rhodium-Catalyzed Asymmetric Hydrogenation:C−C Bond Formation Precedes Hydrogen Activation Jang, H. Y.; Hughes, F. W.; Gong, H.; Zhang, J.; Brodbelt, J. S.; Krische, M. J. J. Am. Chem. Soc. 2005, 127, 6174-6175. 25

  26. Reductive Cyclization of Acetylenic Aldehydes Rhee, J. U.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 10674-10675. 26

  27. Carbonyl and Imine Z-Dienylation via Multicomponent ReductiveCoupling of Acetylene to Aldehydes and α-Ketoesters Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16040-16041. Iida, H.; Krische, M. J. Top. Curr. Chem. 2007; 279, 77-104. 27

  28. Carbonyl and Imine Z-Dienylation via Multicomponent ReductiveCoupling of Acetylene to Aldehydes andN-Arylsulfonyl Imines Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16040-16041. Skucas, E.; Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 7242-7243. 28

  29. Reductive Coupling of Disubstituted Alkynes to Activated Ketones π-Backbonding in the metal-alkyne complex, as described by the Dewar-Chatt-Duncanson model, may facilitate alkyne-C=X (X = O, NR) oxidative coupling by conferring nucleophilic character to the bound alkyne. Due to relativistic effects, iridium is a stronger π-donor than rhodium: (Ph3P)2M(Cl)(CO), M = Ir, νco = 1965 cm-1; M = Rh, νco = 1980 cm-1. This may account for the ability of iridium-based catalysts to activate nonconjugated alkynes, which embody higher lying LUMOs. Ngai, M. Y.; Barchuk, A.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 280-281.. Vaska, L.; Peone, J. Chem. Commun. 1971, 419. 29

  30. Reductive Coupling of Disubstituted Alkynes to Activated Ketones Ngai, M. Y.; Barchuk, A.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 280-281.. 30

  31. Reductive Coupling of Disubstituted Alkynes to N-Arylsulfonyl Imines Ngai, M. Y.; Barchuk, A.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 12644-12645. 31

  32. Reverse Prenylation via Iridium-Catalyzed Hydrogenative Coupling of Dimethylallene Skucas, E.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 12678-12679. 32

  33. Reverse Prenylation via Iridium-Catalyzed Hydrogen Autotransfer and Transfer Hydrogenation Bower, J. F.; Skucas, E.; Patman, R. L.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 15134-15135. 33

  34. Reverse Prenylation via Iridium-Catalyzed Hydrogen Autotransfer and Transfer Hydrogenation A rapid redox equilibration in advance of C-C coupling is operative Bower, J. F.; Skucas, E.; Patman, R. L.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 15134-15135. 34

  35. Ruthenium-Catalyzed C-C Bond-Forming TransferHydrogenation Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6338-6339. Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14120-14122. 35

  36. Ruthenium-Catalyzed C-C Bond-Forming TransferHydrogenation Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6338-6339. Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14120-14122. 36

  37. Enantioselective Iridium-Catalyzed Carbonyl Allylation Kim, I. S.; Ngai, M. Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891-14899. 37

  38. Enantioselective Iridium-Catalyzed Carbonyl Allylation Kim, I. S.; Ngai, M. Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891-14899. 38

  39. Enantioselective Iridium-Catalyzed Carbonyl Allylation Kim, I. S.; Ngai, M. Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891-14899. 39

  40. Enantioselective Iridium-Catalyzed Carbonyl Allylation Kim, I. S.; Ngai, M. Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891-14899. 40

  41. Conclusion • The work of M. J. Krische is the first systematic investigation of the use of catalytic hydrogenation as a method of • C-C coupling since the advent of alkene hydroformylation and the Fischer-Tropsch reaction. • C-C Bond-forming hydrogenation reactions are analogous to conventional carabanion chemistry, • yet they feature complete atom-economy . This makes them particularly suitable candidate reactions • for industrial-scale applications . • Several other retrosynthetic disconnections remain to be explored and may lead to other interesting reactions. 41

More Related