1 / 27

Computer Organization

Computer Organization. 4. The Von Neumann architecture. Stored Program Computers and Electronic Devices. Pattern. Jacquard Loom. Variable Program. Stored Program Device. Fixed Electronic Device. Assembly Language. ; Code for a = b + c load R3,b load R4,c

corinnar
Télécharger la présentation

Computer Organization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ComputerOrganization 4 Operating Systems: A Modern Perspective, Chapter 4

  2. The Von Neumann architecture Operating Systems: A Modern Perspective, Chapter 4

  3. Stored Program Computers and Electronic Devices Pattern Jacquard Loom Variable Program Stored Program Device Fixed Electronic Device Operating Systems: A Modern Perspective, Chapter 4

  4. Assembly Language ; Code for a = b + c load R3,b load R4,c add R3,R4 store R3,a ; Code for d = a - 100 load R4,=100 subtract R3,R4 store R3,d Program Specification Source int a, b, c, d; . . . a = b + c; d = a - 100; Operating Systems: A Modern Perspective, Chapter 4

  5. Machine Language 10111001001100…1 10111001010000…0 10100111001100…0 10111010001100…1 10111001010000…0 10100110001100…0 10111001101100…1 Machine Language Assembly Language ; Code for a = b + c load R3,b load R4,c add R3,R4 store R3,a ; Code for d = a - 100 load R4,=100 subtract R3,R4 store R3,d Operating Systems: A Modern Perspective, Chapter 4

  6. The von Neumann Architecture Central Processing Unit (CPU) Arithmetical Logical Unit (ALU) Control Unit (CU) Address Bus Data Bus Device Primary Memory Unit (Executable Memory) Operating Systems: A Modern Perspective, Chapter 4

  7. The ALU load R3,b load R4,c add R3,R4 store R3,a Right Operand Left Operand R1 R2 . . . Rn Functional Unit Status Registers Result To/from Primary Memory Operating Systems: A Modern Perspective, Chapter 4

  8. load R3,b load R4,c add R3,R4 store R3,a Fetch Unit 10111001001100…1 10111001010000…0 10100111001100…0 10111010001100…1 3050 PC Decode Unit IR load R4, c Execute Unit Control Unit Control Unit 3046 3050 3054 3058 Primary Memory Operating Systems: A Modern Perspective, Chapter 4

  9. Control Unit Operation • Fetch phase: Instruction retrieved from memory • Execute phase: ALU op, memory data reference, I/O, etc. PC = <machine start address>; IR = memory[PC]; haltFlag = CLEAR; while(haltFlag not SET) { execute(IR); PC = PC + sizeof(INSTRUCT); IR = memory[PC]; // fetch phase }; Operating Systems: A Modern Perspective, Chapter 4

  10. 1234 98765 read 1. Load MAR with address 2. Load Command with “read” 3. Data will then appear in the MDR Primary Memory Unit 0 MAR 1 2 MDR Command 1234 98765 Read Op: n-1 Operating Systems: A Modern Perspective, Chapter 4

  11. A Pipelined Function Unit Operand 1 Function Unit Result Operand 2 (a) Monolithic Unit Operand 1 Result Operand 2 (b) Pipelined Unit Operating Systems: A Modern Perspective, Chapter 4

  12. A SIMD Machine ALU Control Unit (a) Conventional Architecture ALU Control Unit ALU ALU … ALU (b) SIMD Architecture Operating Systems: A Modern Perspective, Chapter 4

  13. I/O Devices Operating Systems: A Modern Perspective, Chapter 4

  14. Device manager • Program to manage device controller • Supervisor mode software Abstract I/O Machine The Device-Controller-Software Relationship Application Program Software in the CPU Device Controller Device Operating Systems: A Modern Perspective, Chapter 4

  15. busy done 0 0 idle 0 1 finished 1 0 working 1 1 (undefined) Device Controller Interface . . . busy done Error code . . . Command Status Data 0 Data 1 Logic Data n-1 Operating Systems: A Modern Perspective, Chapter 4

  16. Performing a Write Operation while(deviceNo.busy || deviceNo.done) <waiting>; deviceNo.data[0] = <value to write> deviceNo.command = WRITE; while(deviceNo.busy) <waiting>; deviceNo.done = TRUE; • Devices much slower than CPU • CPU waits while device operates • Would like to multiplex CPU to a different process while I/O is in process • It is called a spin-lock Operating Systems: A Modern Perspective, Chapter 4

  17. Direct Memory Access Primary Memory Primary Memory CPU CPU Controller Controller Device Device Operating Systems: A Modern Perspective, Chapter 4

  18. Addressing Devices Primary Memory Primary Memory Memory Addresses Device 0 Device 0 Memory Addresses Device 1 Device 1 Device Addresses Device n-1 Device n-1 Operating Systems: A Modern Perspective, Chapter 4

  19. Interrupts Operating Systems: A Modern Perspective, Chapter 4

  20. Detecting an Interrupt CPU InterruptRequest flag Device Device Device Operating Systems: A Modern Perspective, Chapter 4

  21. memory[1] contains the address of the interrupt handler Control Unit with Interrupt (Hardware) while(haltFlag not SET) { IR = memory[PC]; execute(IR); PC = PC + 1; if(InterruptRequest) { memory[0] = PC; PC = memory[1] }; Operating Systems: A Modern Perspective, Chapter 4

  22. Interrupt Handler (Software) interruptHandler() { saveProcessorState(); for(i=0; i<NumberOfDevices; i++) if(device[i].done) goto deviceHandler(i); /* something wrong if we get to here … */ deviceHandler(int i) { finishOperation(); returnToScheduler(); } Operating Systems: A Modern Perspective, Chapter 4

  23. Disabling Interrupts if(InterruptRequest && InterruptEnabled) { /* Interrupt current process */ disableInterrupts(); memory[0] = PC; PC = memory[1]; } Operating Systems: A Modern Perspective, Chapter 4

  24. … … Ready Processes Ready Processes Ready Processes CPU CPU Device Device I/O Operation Uses CPU CPU-I/O Overlap CPU Device Operating Systems: A Modern Perspective, Chapter 4

  25. Software interrupts(traps, system calls) Operating Systems: A Modern Perspective, Chapter 4

  26. The trap Instruction (Hardware) executeTrap(argument) { setMode(supervisor); switch(argument) { case 1: PC = memory[1001]; // Trap handler 1 case 2: PC = memory[1002]; // Trap handler 2 . . . case n: PC = memory[1000+n];// Trap handler n }; • The trap instruction dispatches a trap handler routine atomically • Trap handler performs desired processing • “A trap is a software interrupt” Operating Systems: A Modern Perspective, Chapter 4

  27. Branch Table 1 2 3 The Trap Instruction Operation Mode S trap Trusted Code User Supervisor Operating Systems: A Modern Perspective, Chapter 4

More Related