1 / 59

第三章 化学平衡 (Chemical Equilibrium)

第三章 化学平衡 (Chemical Equilibrium). Outline 1. 化学平衡、 平衡常数、 平衡常数关系式 2. K P vs. K C ( 气相反应 ) 3. 转化率 (  ) 4. Q vs. K 5. 平衡常数与自由能变化的关系 Van’t Hoff 等温式 :  G = G + RT ln Q G rxn  =  RT ln K 6. 影响化学平衡的移动的因素 ( 吕  查德里原理 ). H 2 O(g) + CO(g) H 2 (g) + CO 2 (g).

creola
Télécharger la présentation

第三章 化学平衡 (Chemical Equilibrium)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 第三章 化学平衡 (Chemical Equilibrium)

  2. Outline 1. 化学平衡、平衡常数、平衡常数关系式 2. KP vs. KC (气相反应) 3. 转化率 () 4. Q vs. K 5. 平衡常数与自由能变化的关系 Van’t Hoff 等温式: G = G + RT lnQ Grxn =  RT ln K 6. 影响化学平衡的移动的因素 (吕查德里原理)

  3. H2O(g) + CO(g) H2(g) + CO2(g) H2O(g) + CO(g) H2(g) + CO2(g) H2(g) + CO2(g) H2O(g) + CO(g) 可逆反应 (Reversible Reaction)  化学平衡 (Chemical Equilibrium): 在可逆反应中,正逆反应速率相等,反应物和生成物的浓度不再随时间而改变。  化学平衡是一种动态平衡。

  4. H2O(g) + CO(g) H2(g) + CO2(g)

  5. H2O(g) + CO(g) H2(g) + CO2(g)

  6. 平衡的形态 反应 平衡常数 平衡 Ka (酸电离常数) HA + H2O H3O+ + A 酸(碱)电离 溶解 MA(s) Mn+(aq) + An(aq) Ksp (溶度积) 配合物的形成 Kf (形成常数) Mn++ aLb MLa(nab)+ Keq (反应平衡常数) 氧化还原 Ared + Box Aox + Bred AH2O Aorg 相平衡 KD (分布系数)

  7. H2(g) + I2(g) 2 HI(g) (T = 698.5 K) Kc=[HI]2/[H2][I2]

  8. a A + b B c C + d D The Reaction Quotient (反应商) and Equilibrium Constant (平衡常数) Under Any Reaction Conditions [C]c[D]d Reaction quotient = Q = [A]a[B]b When Reaction is at Equilibrium Reaction quotient = Equilibrium constant = K = [C]c[D]d [A]a[B]b

  9. N2 (g) + 3H2 (g) 2NH3 (g) [NH3] K'C = 1/2 N2 (g) + 3/2 H2 (g) NH3 (g) [N2]1/2[H2]3/2 Writing Equilibrium Constant Expressions (平衡常数关系式) (1) 平衡常数的数值与化学方程式书写的方式有关。 [NH3]2 KC = [N2][H2]3 KC = (K'C)2

  10. (2) 如果反应体系中有固体或纯液体参与反应, 它们的浓度不写在平衡常数关系式中。 Fe3O4(s) + 4H2(g) 3Fe(s) + 4H2O(g) [H2O]4 KC = [H2]4

  11. Cr2O72 (aq) + H2O (l) 2CrO42 (aq) + 2H+ (aq) (3) 在稀溶液中进行的反应,如反应有水参加,由于在稀的水溶液中,水的浓度近似于一个常数 (1000/18.016 = 55.5 M), 可将其合并到平衡常数关系式中,水的浓度不写进去. [CrO42]2[H+]2 KC = [Cr2O72 ]

  12. a A + b B c C + d D (4) 气相反应平衡常数 (KP ) 反应物和生成物为气体 PCcPDd KP = PAaPBb PA, PB, PC, PD各为 A, B, C, D 的平衡分压

  13. [C]c[D]d KC = [A]a[B]b a A + b B c C + d D [A], [B], [C], [D] 各为 A, B, C, D 的平衡浓度

  14. Zn(s) + 2 H+(aq) H2(g) + Zn2+(aq) (5) 复相反应的平衡常数:杂平衡常数 (Kx ) KX= [Zn2+]·PH2/[H+]2

  15. Equilibrium Constant Expression for Gases KP vs. KC (气相反应) a A + b B c C + d D (PV = nRT  P = RT = cRT) {[C]RT}c {[D]RT}d PCc PDd = KP = {[A]RT}a {[B]RT}b PAa PBb n [C]c [D]d (RT) [(c+d)(a+b)] = [A]a [B]b  KP = KC(RT)n (n = total moles of gaseous products  total moles of gaseous reactants) n V

  16. KP = 4.60/1.013 = 4.54 atm  KP = 4.60  100 = 460 kPa bar [例] C(s) + CO2(g) 2CO(g), KP = 4.60 (1040 K) ,将此平衡常数用KP 、KP 表示,并计算此温度的KC 、KC 及 KC 。 atm bar atm kPa kPa [解] C(s) + CO2(g) 2CO(g) PCO2 KP =  单位:压力 PCO2 又 1 atm = 1.013  102 kPa = 1.013 bar 1 bar = 105 Pa

  17. KP = KC(RT)n, n = 1 bar bar Kc = KP (RT)1 = 4.60  (0.0831  1040)1 = 0.0532 atm atm Kc = KP (RT)1 = 4.54  (0.0821  1040)1 = 0.0533 kPa kPa Kc = KP (RT)1 = 460  (8.31 1040)1 = 0.0532 P R bar 0.0831 atm 0.0821 kPa 8.31

  18. (6) 当几个反应相加得到总反应时, 总反应的平衡常数等于各相加反应的平衡常数之乘积。(多重平衡规则) [NO2]2 2NO + O2 2NO2 (1) K1 = [NO]2[O2] [N2O4] 2NO2 N2O4 (2) K2 = [NO2]2 [N2O4] K3 = 2NO + O2 N2O4 (3) [NO]2[O2] (1) + (2) = (3) [N2O4] [N2O4] [NO2]2 = K3  = K1 K2 = [NO]2[O2] [NO2]2 [NO]2[O2]

  19. (7) 平衡常数与温度有关.

  20. 平衡常数的分类 (1) 经验平衡常数 (实验平衡常数): Kc , Kp , Kx (2) 相对平衡常数:Kr(或标准平衡常数Kө) r: relative

  21. (1) 经验平衡常数 (实验平衡常数): Kc , Kp , Kx 例1:Cr2O72 (aq) + H2O (l) 2 CrO42 (aq) + 2 H+ (aq) Kc = ([CrO42]2 [H+]2) / [Cr2O72] = 2.0 × 105 (mol·dm3)3有量纲!

  22. 例2: N2O4 (g) 2 NO2 (g) Kp = P2(NO2)/P(N2O4) = 1116 kPa (373 K) 有量纲! KP = KC(RT)n  KC= KP/ (RT)n = 1163 / (8.31 373) = 0.37 mol·dm3

  23. (2) 相对平衡常数:Kr(或标准平衡常数Kө) 为了澄清经验(实验)平衡常数多值性、量纲≠1引起的混乱,引入“相对平衡常数”的概念。 定义:“标准压力”为 pө = 1 ×105 Pa (or 1 atm) “标准(物质的量)浓度”为 cө = 1 mol·dm 3

  24. 混合气体中气体 i 的相对分压为:(r : relative, 相对的) Pir = Pi / Pө 溶液中溶质i 的相对(物质的量)浓度为: cir = ci / cө  Pir 、cir 量纲为 1!

  25. 对于溶液反应:a A(aq) + b B(aq) d D(aq) + e E(aq) 相对浓度平衡常数为: Kcr = ( [cDr ]d [cEr ]e) / ( [cAr ]a [cBr ]b) =Kc×( cө)-△n (△n = d + e  a  b) • 对于气相反应:a A(g) + b B(g) d D(g) + e E(g) 相对压力平衡常数为: Kpr = ([PDr ]d [PEr ]e) / ( [pAr ]a [pBr ]b) =Kp× (pө) △n = Kc (RT)△n (pө) △n (△n = d + e  a  b)

  26. 对于多相反应 a A(g) + b B(aq) d D(s) + e E(g) 相对杂(混合)平衡常数为: K杂r = ([PEr ]e) / ( [PAr ]a [cBr ]b)  Kcr、Kpr、KXr 统一为 Kr: 优点:① 量纲为1; ② 单值。

  27. 关于“平衡常数”的要求: (1) 两套平衡常数都要掌握。 (2) 计算“平衡转化率”或某反应物(或产物)浓度(或分压)时,两套平衡常数均可以用,且用 Kc、Kp、Kx (经验平衡常数)更方便,故IUPAC未予废除。 (3) 只有Kr (或Kө) 才具有热力学含义。 例如,△Gø = RT lnK , 只能用Kr (或Kө)。

  28. NO (g) + O3 (g) NO2 (g) + O2 (g) [NO2][O2] K = = 6 x 1034 at 25C [NO][O3] Meaning of the Equilibrium Constant, K K >> 1, at equilibrium, [NO2][O2] >> [NO][O3]  Reaction is product-favored (Equilibrium concentrations of products are greater than equilibrium concentrations of reactants.)

  29. 3/2 O2 (g) O3 (g) [O3] K = = 2.5 x 1029 at 25C [O2]3/2 K << 1, at equilibrium, [O3] << [O2]3/2  Reaction is reactant-favored. (Equilibrium concentrations of reactants are greater than equilibrium concentrations of products.)

  30. [Isobutane] Kc = = 2.50 at 298 K [Butane] Meaning of the Reaction Quotient, Q Butane Isobutane CH3CH2CH2CH3 CH3CH(CH3)CH3 正丁烷 异丁烷

  31. Comparing Q and K Relative Magnitude Direction of Reaction (反应方向) Q < K Reactant (反应物)  Product (生成物) Q = K Reaction at equilibrium Q > K Product  Reactant

  32. Determining an Equilibrium Constant Example. An aqueous solution of ethanol and acetic acid, each with a concentration of 0.810 M, is heated to 100C. At equilibrium, the acetic acid concentration is 0.748 M. Calculate K at 100C for the reaction C2H5OH(aq) + CH3CO2H(aq) CH3COOC2H5(aq) + H2O(l) ethanol acetic acid ethyl acetate Solution C2H5OH(aq) + CH3CO2H(aq) CH3COOC2H5(aq) + H2O(l) I 0.810 0.810 0 C 0.062 0.062 +0.062 E 0.748 0.748 0.062 K = = 0.062/(0.748)(0.748) = 0.11 (I = Initial; C = Change; E = Equilibrium) [CH3CO2C2H5] [C2H5OH][CH3CO2H]

  33. Example. Suppose a tank initially contains H2S with a pressure of 10.00 atm at 800 K. When the reaction 2 H2S(g) 2 H2(g) + S2(g) reach equilibrium, the partial pressure of S2 vapor is 0.020 atm. Calculate Kp. Solution 2 H2S(g) 2 H2(g) + S2(g) I 10.00 0 0 C 2(0.020) +2(0.020) +0.020 E 9.96 0.040 0.020 Kp = = (0.040)2(0.020)/(9.96)2 = 3.2 x 107 (I = Initial; C = Change; E = Equilibrium) P2H2PS2 P2H2S

  34. Using Equilibrium Constants in Calculations Example. The equilibrium constant K = 55.64 for H2(g) + I2(g) 2 HI(g) has been determined at 425C. If 1.00 mol each of H2 and I2 are placed in a 0.500-L flask at 425C, what are the concentrations of H2, I2, and HI when equilibrium has been achieved? Solution H2(g) + I2(g) 2 HI(g) I 1.00/0.500 1.00/0.500 0 = 2.00 M = 2.00 M C x x +2x E 2.00x 2.00x 2x K = 55.64 = (2x)2/(2.00x)(2.00x) = (2x)2/(2.00x)2  K1/2 = 7.459 = 2x / (2.00x)  x = 1.58  [H2] = [I2] = 2.00  x = 0.42 M; [HI] = 2X = 3.16 M

  35. Calculating an Equilibrium Concentration Using an Equilibrium Constant Example. The reaction: N2(g) + O2(g) 2 NO(g) contributes to air pollution whenever a fuel is burned in air at one high temperature, as in a gaoline engine. At 1500 K, K = 1.0x105. Suppose a sample of air has [N2] = 0.8 mol/L and [O2] = 0.20 mol/L before any reaction occurs. Calculate the equilibrium concentrations of reactants and products after the mixture has been heated to 1500 K. Solution N2(g) + O2(g) 2 NO(g) I 0.80 0.20 0 C x x +2x E 0.80x 0.20x 2x K = 1.0 105 = (2x)2/(0.80x)(0.20x)  (2x)2/(0.80)(0.20)  x = 6.3 104 (condition: 100 K < 0.80 & 0.20)

  36.  [N2] = 0.80  6.3 104  0.80 M [O2] = 0.20  6.3  104  0.20 M [NO] = 2x = 1.26x103M Note: if you don’t use the approximation (1.0 105)(0.80x)(0.20x) = 4x2 (41.0105)x2 + (1.0  105)x + (0.16105) = 0 ax2 bx c  x = 6.3  104(or 6.3  104)

  37. K A B + C I A0 0 0 C x x x E A0x x x Using approximation K = [B][C]/[A] = x2/(A0x) x2/(A0) (When K is very small, the value of x will be much less than A0)  If 100 K < A0, The approximate expression will give acceptable values of equilibrium concentrations.

  38. 转化率 () 转化掉的部分  = 转化前的全部

  39. [例] 在密闭容器中, CO 和 H2O 在 850◦C 时建立下列平衡: CO(g) + H2O(g) CO2(g) + H2(g), Kc = 1.0 (1) 计算 CO 和 H2O 起始浓度分别为 2.0 M 和 3.0 M 时,CO 和 H2O的转化率及各组分的平衡浓度; (2) 计算 CO 和 H2O 起始浓度分别为 1.0 M 和 5.0 M 时,CO 和 H2O的转化率; (3) 计算 CO 和 H2O 起始浓度分别为 2.0 M 和 5.0 M 时,CO 和 H2O的转化率。

  40. [解] CO(g) + H2O(g) CO2(g) + H2(g) Kc = 1.0 (1) 起始浓度 2 3 0 0 平衡浓度 2x 3x x x x2  X = 1.2 Kc = = 1 (2x)(3x) [CO] = 0.8 M [H2O] = 1.8 M [CO2] = 1.2 M [H2] = 1.2 M 1.2 / 2  100% = 60% CO = 1.2 / 3 100% = 40% H2O =

  41. (2) 解得 x = 0.83 (M) 0.83 / 1  100% = 83% CO = 0.83 / 5  100% = 17% H2O = (3) 解得 x = 1.4 (M) 1.4 / 2  100% = 70% CO = 1.4 / 5  100% = 28% H2O =

  42. 平衡常数与自由能变化的关系 a A + b B c C + d D Van’t Hoff 等温式: (封闭体系、等温、不做非体积功) (推导:p55) G = G+ RT lnQ (1) G:在指定温度下, 反应物与生成物处于标准状态, 即固体和液体系纯净的固体和纯净的液体物质、气体分压为1bar,溶液的浓度为1时,反应物完全转变为生成物的自由能变化。 G :气体的分压或溶液的浓度为任意数值时,反应的自由能变化。

  43. a A + b B c C + d D [C]c [D]d Q = [A]a [B]b 平衡时, G = 0  0 = G + RT lnK  Grxn =  RT ln K (2) (= 2.303 RT log K) R = 8.314 JK1mol 1

  44. Grxn =  RT ln K If Grxn < 0  product-favored reaction  K > 1 (Grxn 愈负,K愈大) If Grxn > 0  reactant-favored reaction  K < 1

  45. Free Energy, the Reaction Quotient, and the Equilibrium Constant  The free energy at equilibrium is lower than either the free energy of the pure reactants or the free energy of the pure products. Grxn =  Gf,生成物  Gf,反应物 =Hrxn TSrxn =  RT ln K

  46.  Grxn predicts the direction in which a reaction proceeds to reach equilibrium and may be calculated from Grxn = Grxn + RT ln Q = RTln (Q/K) When Grxn < 0, Q < K  reactants  products When Grxn > 0, Q > K  products  reactants When Grxn = 0, Q = K  at equilibrium

  47. [例] 分别计算合成氨反应: N2(g) + 3H2(g) 2NH3(g)在 298K 及 673K 时的平衡常数. [解] (1) 298 K G= 2  Gf = 2  (16.5) = 33.0 (kJ·mol1) G =  RT lnKp  Kp = 6.11  105 (R = 8.314  103kJK1mol1)

  48. (2) 673 K G◦673 = H◦298  TS◦298 H◦298 = 2  H◦f = 2  (46.1) = 92.2 (kJ·mol1) S◦298 = 2  S◦NH3  S◦N2  3  S◦H2 = 2  192.51 191.49 3  130.6 = 198.3 (J·mol 1·K 1)  G673 = 92.2  673  (198.3/1000) = 41.3 (kJ·mol1) G673 =  RT lnKp  Kp = 6.15  10 4

  49. 影响化学平衡的移动的因素 (1)浓度 (2)压力 (3)温度

  50. 吕查德里原理 (Le Châtelier’s principle) 改变平衡体系的外界条件时,平衡向着削弱这一改变方向移动。

More Related