1 / 28

XMM-Newton View of TeV Blazars

XMM-Newton View of TeV Blazars. 张有宏 清华大学天体物理中心. Outline. Introduction to Blazars X-ray variability properties of TeV blazars Blazars vs GRBs vs micro-quasars/blazars

danica
Télécharger la présentation

XMM-Newton View of TeV Blazars

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. XMM-Newton View of TeV Blazars 张有宏 清华大学天体物理中心 5th micro-quasar workshop

  2. Outline • Introduction to Blazars • X-ray variability properties of TeV blazars • Blazars vs GRBs vs micro-quasars/blazars • Multi-wavelength observations of PKS2155-304 with XMM-Newton (our work); comparisons with other coordinated multi-wavelength observations • XMM-Newton timing mode observations of Mrk 421 (other work) • Physical implications inferred from the observations 黑洞天体物理前沿问题年度研讨会(2006)

  3. Blazar SED Sequence optical X-ray • Nonthermal emission • Low energy: Synchrotron • High energy: Inverse Compton • Luminosity-related SED? • Peak energy (synchrotron) • HBLs, LBLs, FSRQs • Cooling-dependent • Variability comparison • Same mechanism •  GRBs and micro-quasars (micro-blazars) (Fossati et al . 1998) 黑洞天体物理前沿问题年度研讨会(2006)

  4. Jet/Synchrotron Emission (Mirabel, Sky and Telescope, May 2002, 32) 黑洞天体物理前沿问题年度研讨会(2006)

  5. TeV Blazars • 6 TeV blazars (confirmed): • Mrk 421, PKS 2155-304, Mrk 501 • HBLs: synchrotron component peaks at UV-X-rays • X-ray emission are the high energy tail of synchrotron emission  • X-rays are expected to be violently variable  • To probe particle acceleration and cooling of relativistic particles 黑洞天体物理前沿问题年度研讨会(2006)

  6. 由李-马公式的引用看甚高能伽玛射线天文学的兴衰由李-马公式的引用看甚高能伽玛射线天文学的兴衰 黑洞天体物理前沿问题年度研讨会(2006)

  7. X-ray Variability of TeV blazars: ASCA/SAX/RXTE • Flux variations: • Timescales: ~ days with rapid flicker superimposed • Variability amplitude: energy dependent • PSD: not useful, slpoe ~ 2.5 • Cross-correlation function (CCF)  time lags • Spectral evolution: • The higher flux, the harder spectrum • Peak energy shifts to higher energy with higher flux • Mrk 501: ~100 keV by SAX (Pian et al. 1998) • Similar optical variability in LBLs (e.g., BL Lac observed with Tsinghua 80cm telescopes) 黑洞天体物理前沿问题年度研讨会(2006)

  8. X-ray time lags of TeV blazars • Time lags are different from flare to flare: • Soft lags: soft photons lag hard ones • Hard lags: hard photons lag soft ones • Amplitude of lags: 0 - ~3 hours? • Time lags appear to correlate with • Photon energy • Flare’s duration • Spectral slope • Timescale (Fourier frequency) ? 黑洞天体物理前沿问题年度研讨会(2006)

  9. Lags: TeV blazars vs microquasars and GRBs • TeV blazars: X-ray soft/hard lags • GRBs: gamma-ray soft lags (hard lags?): cooling/accelerating time scales of relativistical electrons  jet/synchrotron mechanism for X-ray (optical-UV) in TeV blazars, and gamma-ray (X-ray-Optical) in GRBs • Microblazars, microquasars, X-ray binaries • Hard lags: Comptonization of soft photons by reletivistic electrons • From hot corona or from the jets • Hard (Soft?) lags  jet/synchrotron X-ray (lower energy) emission? • More complicated: e.g. soft X-rays may be dominated by the accretion disk 黑洞天体物理前沿问题年度研讨会(2006)

  10. Multi-wavelength variability of TeV blazars • Strongest constraints on emission models • Multi-wavelength variability: • Peak fluxes correlated: Mrk 421 • Different correlations over different timescales • Whether X-ray variability properties can be extrapolated to UV-Optical bands? • Coordinated multi-wavelength observations • Optical-UV and X-ray instruments onboard XMM 黑洞天体物理前沿问题年度研讨会(2006)

  11. XMM-Newton observations of TeV blazars • Calibration sources, observed about twice per year (and Guest Observers)  • Mrk 421 (31obs. > 9 orbits) and PKS 2155-304 (9 orbits) over about 6 years • Optical-UV-X-ray observations of PKS 2155-304 • X-ray timing mode observations of Mrk 421 黑洞天体物理前沿问题年度研讨会(2006)

  12. UV and X-ray observations of PKS 2155-304 • Orbit 087: 2000 May 30-31 (Zhang et al. 2006) • ~ 0.3 days lag of UV to soft X-rays??? 黑洞天体物理前沿问题年度研讨会(2006)

  13. UV and X-ray observations of PKS 2155-304 • Orbit 171: 2000 Nov 19-20 (Zhang et al. 2006) • ~ no detectable lag of UV to X-ray (if, hard lag?) 黑洞天体物理前沿问题年度研讨会(2006)

  14. UV and X-ray observations of PKS 2155-304 • Variability amplitude vs energy 黑洞天体物理前沿问题年度研讨会(2006)

  15. UV and X-ray observations of PKS 2155-304 • Soft X-ray/UV hardness ratio vs count-rate 黑洞天体物理前沿问题年度研讨会(2006)

  16. Optical and X-ray observations of PKS 2155-304 • Orbit 362: 2001 November 30 黑洞天体物理前沿问题年度研讨会(2006)

  17. Comparison with previous multi-wavelength observations • 1991 November, achromatic quasi-periodic variability, soft X-rays (25A) led UV (1400A) by ~ 1 hour (Edelson et al. 1995) 黑洞天体物理前沿问题年度研讨会(2006)

  18. Comparison with previous multi-wavelength observations • 1994 May: well-defined flare; variability amplitude decreased, and temporal profile broadened with increasing wavelengths; X-rays led EUV and UV by ~ 1 and 2 days (Urry et al. 1997) 黑洞天体物理前沿问题年度研讨会(2006)

  19. XMM-Newton multi-wavelength observations: intra-day variability • Previous coordinated multi-wavelength observations: inter-day variability •  Complex multi-wavelength observations can occur over different timescales • XMM-Newton multi-wavelength observations are superior: • Resolution • Signal-to-noise ratio 黑洞天体物理前沿问题年度研讨会(2006)

  20. XMM timing mode observations of Mrk421 • Currently the highest Signal-to-noise ratio (Brinkmann et al. 2005) 黑洞天体物理前沿问题年度研讨会(2006)

  21. Time-resolved CCF analysis • Sliding window (2000s, 6000s, and 20000s) 黑洞天体物理前沿问题年度研讨会(2006)

  22. Characteristic timescales? • 5.2 ks, 7.2 ks, 10 ks for orbit 084, 546, 807 黑洞天体物理前沿问题年度研讨会(2006)

  23. Physical implications • Correlations at different time lags  a common “synchrotron” origin • Substantially different patterns of variability over different timescales  constraints on radiation models would be different from epoch to epoch, requiring, e.g., • changes in the parameters characterizing the emitting region or • different mechanisms operating 黑洞天体物理前沿问题年度研讨会(2006)

  24. Homogeneous Scenario the smaller the lag, the larger the combination of B andδ Zhang et al. (2002) 黑洞天体物理前沿问题年度研讨会(2006)

  25. UV vs X-ray lags • ~ 2 days in 1994 May • < 800 s in 2000 November •  theratio of B between 2000 November and 1994 May would be> 36 (δ ~ 10) •  the extreme values of B to be unacceptable in reality, but 黑洞天体物理前沿问题年度研讨会(2006)

  26. Interpretation of the observed lags may be very likely affected by, e.g., inhomogeneous emitting region(s): • stratified shock model or • an energy dependent volume 黑洞天体物理前沿问题年度研讨会(2006)

  27. Shoch-in-jet model • At tobs, emission from certain position R(t), and earlier emission from all positions; >~ 60% “background emission” • Two-colliding-shell model: shock structure developed; noticeable changes of the physical state of emission region and unexpected changes of emission properties (Brinkmann et al. 2005). 黑洞天体物理前沿问题年度研讨会(2006)

  28. Conclusions • The complex variability behaviour of TeV blazars; • It appears hard to uniquely constrain the underlying physical properties for the emission process from the observations; • Better observations and extended relativistic MHD numerical simulations • Well-defined major fares (possibly a single episode) might still provide the most likely situation to probe any detailed insight, e.g., • any connection between the sign of the lags and the rise and decay of the flux, and • any relation between the lags (sign) and the peak energy of the synchrotron emission. 黑洞天体物理前沿问题年度研讨会(2006)

More Related