1 / 23

Kollektive Eigenschaften in Kern-Kern Kollisionen bei hohen Energien

Kollektive Eigenschaften in Kern-Kern Kollisionen bei hohen Energien. Kai Schweda, Physikalisches Institut/ GSI Darmstadt. Quantum Chromodynamics. Quantum Chromodynamics (QCD) is the established theory of strongly interacting matter. Gluons hold quarks together to from hadrons:

dawson
Télécharger la présentation

Kollektive Eigenschaften in Kern-Kern Kollisionen bei hohen Energien

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kollektive Eigenschaftenin Kern-Kern Kollisionen bei hohen Energien Kai Schweda, Physikalisches Institut/ GSI Darmstadt

  2. Quantum Chromodynamics • Quantum Chromodynamics (QCD) is the established theory of strongly interacting matter. • Gluons hold quarks together to from hadrons: • Gluons and quarks, or partons, typically exist in a color singlet state: confinement. meson baryon

  3. LHC RHIC COBE Natur Quark-Gluon Plasma Atome Nukleonen Kerne Heute Urknall 10 –6 sec 10 –4 sec 3 min 15 Mil Jahre Experiment http://www.lbl.gov/Publications/Nobel/ George Smoot John Mather COBE: Discovery `baby photo’ of the universe RHIC: Live history of the universe

  4. Quark Gluon Plasma Source: Michael Turner, National Geographic (1996) • Quark Gluon Plasma: • Deconfined and • thermalized state of quarks and gluons •  Study partonic EOS at RHIC and LHC(?) Probe thermalization using heavy-quarks

  5. STAR Au + Au Collisions at RHIC Peripheral Event (real-time Level 3)

  6. STAR Au + Au Collisions at RHIC Mid-Central Event (real-time Level 3)

  7. STAR Au + Au Collisions at RHIC Central Event (real-time Level 3)

  8. Pressure, Flow, … • Thermodynamic identity • – entropy p – pressure U – energy V – volume t = kBT, thermal energy per dof • In A+A collisions, interactions among constituentsand density distribution lead to: pressure gradient  collective flow • number of degrees of freedom (dof) • Equation of State (EOS) • cumulative – partonic + hadronic

  9. More central collisions Protons From RHIC • In central collisions, spectrum becomes more concave collective flow ! • Flow velocity <b> = 0.60 ± 0.05 in most central collisions

  10. Anisotropy Parameter v2 coordinate-space-anisotropy  momentum-space-anisotropy y py px x Initial/final conditions, EoS, degrees of freedom

  11. v2 at Low Momentum P. Huovinen, private communications, 2004 - Mass hierarchy  collective flow ! - Hydro-dynamical model : acces to equation of state !

  12.  -meson Flow: Partonic Flow • -mesons: • little hadronic interactions • strong collective flow • formed via coalescence of • thermal s-quarks •  Collectivity at quark level ! STAR Preliminary: SQM06, S. Blyth Hwa and Yang, nucl-th/0602024; Chen et al., PRC73 (2006) 044903

  13. Collectivity, Deconfinement at RHIC - v2 of light hadrons and multi-strange hadrons - scaling by the number of quarks At RHIC:  number-of-constituent quark scaling  De-confinement PHENIX: PRL91, 182301(03) STAR: PRL92, 052302(04), 95, 122301(05) nucl-ex/0405022, QM05 S. Voloshin, NPA715, 379(03) Models: Greco et al, PRC68, 034904(03) Chen, Ko, nucl-th/0602025 Nonaka et al. PLB583, 73(04) X. Dong, et al., Phys. Lett. B597, 328(04). i ii

  14. EoS Parameters at RHIC • In central Au+Au collisions at RHIC • - partonic freeze-out: • *Tpfo = 165 ± 10 MeV weak centrality dependence • vpfo ≥ 0.2 (c) • - hadronic freeze-out: • *Tfo = 100 ± 5 (MeV) strong centrality dependence • vfo = 0.6 ± 0.05 (c) • Systematic studies are needed to understand the • centrality dependence of the EoS parameters • * Thermalization assumed

  15. Higgs mass: electro-weak symmetry breaking. (current quark mass) • QCD mass: Chiral symmetry breaking. (constituent quark mass) • Strong interactions do not affect heavy-quark masses. • Important tool for studying properties of the hot/dense medium at RHIC. • Test pQCD predictions at RHIC and LHC. Quark Masses Total quark mass (MeV)

  16. J/yEnhancement at LHC • Statistical hadronization  strong centrality dependence of J\y yield at LHC • Need total charm yields ! • Measure D0, D±, Lc • Probe deconfinement and thermalization J/y: c c  scc Number of participants More central collisions Calculations: P. Braun Munzinger, K. Redlich, and J. Stachel, nucl-th/0304013.

  17. Multiply Heavy-flavored Hadrons • Statistical hadronization- de-confined heavy-quarks • equilibrated heavy-quarks •  Enhancement up to x1000 ! • Measure Xcc, Wcc, Bc, (Wccc) • Need total charm yields • Probe deconfinement and thermalization @ LHC • Quark Gluon Plasma ! Quarks and gluons  hadrons Pb+Pb Wccc / D : p+p c cc x1000 F. Becattini, Phys. Rev. Lett. 95, 022301 (2005); P. Braun Munzinger, K. Redlich, and J. Stachel, nucl-th/0304013.

  18. The key point is to idenitfy and measure Heavy-Flavor Collectivity D0, D, D+s, L+C, J/y, B0, B±, , …

  19. Large Hadron Collider LHC am CERN Energie in einer Blei-Blei Kollision 1150 TeV = 0.18 mJ Faktor 300 höher als in SPS Experimenten sehr heisser Feuerball! T = 1000 MeV

  20. ALICE beim LHC Bis zu 60000 geladene Teilchen Faktor 25 höher als beim SPS ~ PetaByte (1015) pro Jahr TRD TPC ITS

  21. J/y  e+ + e- Reconstruction J/y: c c : b b • J/y e+ + e- (BR = 6%) • Reconstruct invariant mass • TRD identifies electrons  Identify quarkonia

  22. Taken from P. Senger 1) LHC heavy-flavor program: 2) FAIR / CBM program: - Study medium properties - pQCD in hot and dense medium - Search for phase boundary. - Chiral symmetry restoration Start: 2007 Start: ~2012

More Related