1 / 70

Le simulazioni del Progetto MEGAPOLI: confronti con le simulazioni di MINNI D’Allura, S. Finardi, P. Radice, C. Silibell

Le simulazioni del Progetto MEGAPOLI: confronti con le simulazioni di MINNI D’Allura, S. Finardi, P. Radice, C. Silibello. 1-2 Nov 2010 - 2nd Annual MEGAPOLI Meeting (Hamburg, Germany). Messaggi.

duncan
Télécharger la présentation

Le simulazioni del Progetto MEGAPOLI: confronti con le simulazioni di MINNI D’Allura, S. Finardi, P. Radice, C. Silibell

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Le simulazioni del Progetto MEGAPOLI: confronti con le simulazioni di MINNI • D’Allura, S. Finardi, P. Radice, C. Silibello 1-2 Nov 2010 - 2nd Annual MEGAPOLI Meeting (Hamburg, Germany)

  2. Messaggi • Le nostre simulazioni producono una quantità di dati che spesso non utilizziamo e che forniscono, invece, informazioni molto utili. Alcuni esempi forniti dalle simulazioni effettuate da ARIANET all’interno del progetto MEGAPOLI; • Utilizzo di dati di AOD (dati MODIS/rete AERONET) per una più completa valutazione delle nostre simulazioni. Un esempio dal progetto MEGAPOLI; • “Data assimilation” ? • Il confronto delle simulazioni MINNI/Nord-Italia e MEGAPOLI/Po Valley suggerisce l’ipotesi che simulazioni innestate EUROPA/ITALIA/MACROREGIONI possano fornire stime più corrette relativamente al PM

  3. Le nostre simulazioni producono una quantità di dati che spesso non utilizziamo e che forniscono, invece, informazioni molto utili. Alcuni esempi forniti dalle simulazioni effettuate da all’interno del progetto MEGAPOLI

  4. Po Valley simulations Nested domains G1 G2

  5. Po Valley simulations (June, December 2005) • Runs over Po Valley considering two nested domains. • FARM: • SAPRC99 gas phase chemical mechanism / aero3 aerosol module • Rosenbrock solver– ROS3 • Space resolution: 16 and 4 km (horizontal); 16 levs, up to 10 km (vertical) • Emissions: • Anthropogenic: TNO data set ( 7 km resolution); Italian data set (ISPRA - Province level); Regional data sets (INEMAR - Municipal level); • BIOGENIC: SURFPro Isoprene and Terpenes from vegetation, PM (fine and coarse) from aeolian resuspension and sea salts, wind influence; • Meteorology: • RAMS; • IC/BC: • MPI MATCH – Global scale: gaseous species • GOCART – Global scale: Climatological aerosols

  6. Italy - ISPRA (Province level) Regions - INEMAR (Municipal level) TNO data set ( 7 km resolution) Po Valley simulations Emission inventories

  7. PROCESS CONTRIBUTIONSComputed from hourly balance terms computed runtime over inner model grid

  8. Po Valley simulations Process contribution to PM2.5 [g]In/Out flows Gain/Inflow Loss/Outflow June 2005 Net_flow = Hor_inflow + Hor_outflow + Top flow

  9. Po Valley simulations Process contribution to PM2.5 [g]Other processes BIOGENIC SOA June 2005

  10. Po Valley simulations Process contribution to PM2.5 [g]Biogenic emissions (terpenes) -> SOA TRP1 emissions BIOGENIC SOA June 2005

  11. Po Valley simulations Biogenic emissions vs Temperature Temperature dependence; Isoprene emissions: during daylight between April and October; Terpenes emissions: full year Tavg: ground level average temperature at noon; Isoprene/Terpene emissions (daily integral over all domain) June 2005

  12. Po Valley simulations Process contribution to O3Chemistry vs Temperature June 2005 Tavg: ground level average temperature at noon, O3 Chemistry: daily integral

  13. Po Valley simulations Process contribution to CO[g]CO production from Isoprene/terpenes ozonolysis {190} ISOPRENE + O3 = 0.266 OH + 0.066 RO2_R + 0.008 RO2_N + 0.126 R2O2+ 0.192 MA_RCO3 + 0.275 CO+ 0.592 HCHO + 0.1 PROD2 + 0.39 METHACRO + 0.16 MVK + 0.204 HCOOH + 0.15 RCO_OH {194} TERP + O3 = 0.567 OH + 0.033 HO2 + 0.031 RO2_R + 0.18 RO2_N + 0.729 R2O2+ 0.123 CCO_O2 + 0.201 RCO_O2 + 0.157 CO+ 0.235 HCHO + 0.205RCHO + 0.13ACET + 0.276PROD2 + 0.001GLY + 0.031 BACL + 0.103 HCOOH + 0.189 RCO_OH + TRP1AER (->AORB)

  14. Po Valley simulations Process contribution to CO[g]Other processes Chemistry ? June 2005 Dry deposition is negligible and wet deposition is not considered for CO

  15. Po Valley simulations Process contribution to CO[mol]Chemistry/interpretation June 2005

  16. Particle dry deposition velocity

  17. Po Valley simulations PM: Process contribution/dimensional analysis Accumulation mode particles may be transported outside Po Valley region (because of lower dry deposition). Inflow Outflow Negligible outflow from Po Valley region, for Aikenand Coarse mode particles, due to dry deposition process. June 2005

  18. Po Valley simulations Process contribution to HNO3 [g]Other processes HNO3 nigh time production due to chemistry less dissolution of HNO3 in the particles? June 2005

  19. Po Valley simulations Process contribution to HNO3 [mol]Aerosol processes The decrease in the PM liquid water content leads to less dissolution of HNO3 in the particles June 2005

  20. Po Valley simulations Process contribution to HNO3 [g]Other processes Dec. 2005

  21. Po Valley simulations Process contribution to HNO3 [g]Aerosol processes No further HNO3 reacts with ammonia to form volatile salts Dec. 2005

  22. Aerosol types • from [Nenes et al., 1998 ] …based on the value of this ratio [in the simulations we do not include sodium and chloride], following types of aerosols are defined: • Sulfate rich (free acid): This is when RSO4 < 1. The sulfates are in abundance and part of it is in the form of free sulfuric acid. In this case, there is always a liquid phase, because sulfuric acid is extremely hygroscopic (i.e., DRH is 0%); • Sulfate rich (non free acid): This is when 1RSO4 < 2. There is enough ammonia to partially (but not fully) neutralize the sulfates. The sulfates are a mixture of bisulfates and sulfates, the ratio of which is determined by thermodynamic equilibrium; • Sulfate poor: RSO4  2: There is enough ammonia to fully neutralize the sulfates. In this case, excess ammonia can react with the other species (HNO3, HCl) to form volatile salts.

  23. Scen_50 Scen_0 June 2005 Sulfate rich (1RSO4 < 2)

  24. Dec. 2005 Sulfate poor (RSO4  2) Scen_50 Scen_0

  25. NO-3 % differences with the “Base case" Scen_0 Scen_50 Absolute differences with the “Base case" 50% reduction of emis. leads to a reduction of conc. greater than 50% June 2005

  26. NO-3 % differences with the “Base case" Scen_0 Scen_50 50% reduction of emis. leads to a reduction of conc. lower than 50% Absolute differences with the “Base case" Dec. 2005

  27. Po Valley simulations Po-Valley tracers emissions “CO” and “PM fine” tracers are emitted only in the Po Valley region (green); are transported and deposited (dry and wet); chemical and aerosol precesses are not considered (chemically not reactive).

  28. Po Valley simulations “CO”tracer CO Base case – Scen_0 CO tracer Base case June 2005 Absolute differences Base case concentrations

  29. Po Valley simulations “CO”tracer CO Base case – Scen_0 CO tracer Base case Dec. 2005 Absolute differences Base case concentrations

  30. Utilizzo di dati di AOD (dati MODIS/rete AERONET) per una più completa valutazione delle nostre simulazioni. Un esempio dal progetto MEGAPOLI

  31. AOD, Jan FARM Terra (MODIS) I campi di AOD satellitari vengono confrontati con I campi medi mensili prodotti da FARM relativi alle ore 12 (media mobile esaoraria). I campi medi osservati potrebbero non essere congruenti con quelli stimati a seguito delle possibile mancanza di dati satellitari.

  32. AOD, Jun FARM Terra (MODIS)

  33. AERONET Stations

  34. AOD: FARM vs MODIS and Aeronet, data

  35. AOD: FARM vs MODIS Aeronet, data

  36. AOD: FARM vs MODIS Aeronet, data (ITALY)

  37. EMEP PM10 Stations

  38. O3 EMEP Network

  39. FARM SILAM 1.7.2009, NO2 near-surface concentrations from FARM-ARIANET and SILAM-FMI

  40. O3Comparison with some Norvegian observationshttp://tarantula.nilu.no/projects/ccc/emepdata.html NO0001 Birkenes NO0039 Kårvatn NO0041R Osen NO0043 Prestebakke NO0048 Voss NO0052 Sandve NO0056 Hurdal

  41. O3Comparison with some Norwegian observations

  42. Data assimilation

  43. Sistema MINNI Run “NI1” 2005 a 4 km Test assimilazione medie annuali BRACE

  44. Sistema MINNI Concentrazioni medie annuali di NO2

  45. Sistema MINNI Medie annuali NO2 - 2005 Run “IT1” a 4 km (inventario ISPRA)

  46. Sistema MINNI Medie annuali NO2 - 2005 Run “IT1” a 4 km (inventario ISPRA) + assimilazione

  47. Sistema MINNI Confronto speditivo con database BRACE In via preliminare sono state prese in considerazione tutte le stazioni BRACE disponibili, senza selezione e controlli di coerenza; anche la tipologia fondo/industriale/traffico e rurale/suburbana/urbana è stata mutuata direttamente da quella presente nella base dati.

  48. Sistema MINNI Medie annuali NO2 - 2005 Run “IT1” a 4 km (inventario ISPRA) Confronto su tutte le stazioni di fondo(122)

More Related