1 / 31

Spin depend electron transport: AMR, GMR

Spin depend electron transport: AMR, GMR. Lecture 2. Magnetorezystancja. Anizotropowa Magnetorezystancja AMR origin spin – orbit coupling (  1960) Gigantyczna Magnetorezystancja GMR 1986 – oscillatory interlayer exchange coupling in Fe/Cr/Fe multilayers

etta
Télécharger la présentation

Spin depend electron transport: AMR, GMR

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spin depend electron transport: AMR, GMR Lecture 2

  2. Magnetorezystancja Anizotropowa Magnetorezystancja AMR origin spin – orbit coupling (1960) Gigantyczna Magnetorezystancja GMR 1986 – oscillatory interlayer exchange coupling in Fe/Cr/Fe multilayers P. Grünberg et al. Phys Rev.Lett. 57 (1986), 2442 1988 – GMR in Fe/Cr/Fe multilayers M. N. Baibich,..., A.Fert,.. et.al. Phys Rev.Lett. 61 (1988), 2472

  3. Ohms law for galvanomagnetic effects m = M / |M| mx= sinq cosf my= sinq sinf mz= cosf, • magnetoresistivityDr = r- r

  4. Galvanomagnetic effects in the plane of thin film • Longitudinal magnetoresistivity effect • Transversal magnetoresistivity effect

  5. Angle dependence of the longitudinal magnetoresistivity U = R i U = Ri

  6. Magnetic field dependence of the longitudinal magnetoresistivity effect (AMR) if i || Hq =f

  7. I = const Ua magnetoresistance - - U U R R D R a p a p = = »  % 5 100 U R R p p p Giant Magnetoresistivity - GMR I = const  10 nm Up ferromagnet nonferromagnet (Cu) ferromagnet

  8. Thickness dependence of spacer layer

  9. GMR is isotropic in respect to the current

  10. Below, structure of Fe film/ Cr wedge/ Fe whisker illustrating the Cr thickness dependence of Fe-Fe exchange. Above, SEMPA image of domain pattern generated from top Fe film. (J. Unguris et al., PRL 67(1991)140.)

  11. M M I R small Spin depend conductivity I R large

  12. Density of states in 3-d metals GMR  due scattering into the empty quantum states above the Fermi level D(EF) For ferromagnetic 3d metals D(EF)  D(EF)    

  13. Energy Energy Energia EF d d d s s s Spin Spin polarization of ferrmagnets Magnetization Density of states

  14. Pseudo spin valve (PSV) M(H) & R(H) Two stages charactristics

  15. Magnetic dots Co (4nm) Cu (3nm) NiFe (6nm)

  16. 0 1 Magnetic Random Access Memory (MRAM) ścieżka przewodząca antyferromagnetyk ferromagnetyki nieferromagnetyczna międzywarstwa  150 nm

  17. Zastosowania pseudo-zaworów spinowych • Nieulotne pamięci magnetyczne o dostępie swobodnym (Magnetic Random Access Memory) • matryca złożona z komórek pamięciowych: elementów PSV • bit informacji reprezentowany poprzez wzajemną orientację wektorów namagnesowania warstw ferromagnetycznych twardej i miękkiej; • zapis poprzez przemagnesowanie silniejszym prądem; • odczyt poprzez detekcję zmiany rezystancji • informacja przechowywana jest po zaniku zasilania; • szybki zapis i odczyt, mały pobór mocy; • cykle zapisujące są nieniszczące; • odporność na promieniowanie jonizujące.

  18. M(H) magnetization Spin-Valve (SV) R(H) magnetoresistance

  19. Spin valve (SV) – M(H) & R(H) high magnetoresistance field sensitivity

  20. Different GMR Structures

  21. Conclusions • GMR can only be observedif at latest two ferromagnetic layers are separated by non-magnetic metal layers • GMR has a maximum, if the magnetization vectors in adjacent • F-layers is antiparallel • CPP has a larger effect than CIP • GMR is a direct image of the magnetic hysteresis • GMR is much larger than AMR • GMR increases with decreasing temperature • GMR depends on the number of F/M interfaces • For the GMR effect it is not important how the antiparallel orientation of the magnetization vectors in adjacent ferromagnetic layers is achivied (exchange bias F/AF or exchange coupling SAF)

More Related