1 / 51

<信賴區間與信心水準的解讀>

<信賴區間與信心水準的解讀>. 大網. 常態分佈 統計的意義 信賴區間. 一、從常態分配談起. 為何成績單只要有個人成績加上 平均數 、 標準差 ,就足夠估計學生大約的名次? 例: A 生成績(全班 40 人) 由資料可知, A 生平均分數距離全班平均分數約 個標準差。 由 68 - 95 - 99.7 的法則可知, A 生的百分等級約為 68 + (100 - 68)/2=84 ,全班排名約為 40 (100 - 84)% ≒ 6 名.

Télécharger la présentation

<信賴區間與信心水準的解讀>

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. <信賴區間與信心水準的解讀>

  2. 大網 • 常態分佈 • 統計的意義 • 信賴區間

  3. 一、從常態分配談起 • 為何成績單只要有個人成績加上平均數、標準差,就足夠估計學生大約的名次? • 例:A 生成績(全班 40 人) • 由資料可知,A 生平均分數距離全班平均分數約 個標準差。 由 68-95-99.7 的法則可知,A 生的百分等級約為 68+(100-68)/2=84,全班排名約為 40(100-84)%≒ 6 名

  4. 為何可以如此估算? • 我們假設全班成績分佈為一常態分佈

  5. 設常態分配的期望值為m、變異數為s 2,則常態分配的機率分配函數是

  6. p 標準常態分配累積機率表 zp 0 標準常態分配 • 上面的標準常態累積機率表,是由平均值為 0、標準差為 1 的標準常態分配機率密度函數(上圖中的 f (x)),計算從-∞到 zp曲線下的面積而得,通常記作F(zp),因此上表可以寫成 F(zp)= p。

  7. 標準常態分配累積機率表 • 以 z = 1.96 為例, F(1.96)≒0.975, 所以在平均值前後 1.96 個標準差的機率為0.975−0.025 = 0.950。 0.975 0.950 0.025 0 1.96 1.96 -1.96 0

  8. 大學聯考的統計資料  已知 m ≒54.63 s≒13.73

  9. 某生國文成績為 24.7 分 • 這個分數距離平均值 個 標準差。 • 利用常態分配表推知他的百分等級是 2.5%, 但由大考中心資料得知他實際的百分等級是 4% • 上述兩個例子是用常態分配去近似班級考試分配及大學指考分配,但只是近似,顯然不可能完全正確推算名次。

  10. 二、統計的意義 • 敘述統計的內容是數據的整理和呈現;整理的目的,是要把數據本身的訊息,清楚顯現出來。 • 這包括畫直方圖、算全距、四分位差或平均數、標準差等等。 • 而推論統計要由小推大、從樣本推母體。 • 民調就是一個具有代表性的例子

  11. 推論統計的應用 • 新藥是否有效(只有很小一部份人試用,卻要評估對所有病人的療效) • 向工廠訂購的大量零件產品是否符合要求(只抽一部份檢驗,卻要估計整批貨的不良品比率)

  12. 隨機樣本 • 從這麼小的樣本,推估這麼大的母體,有根據嗎? • 抽樣方法正確,就有根據。 • 重點在於:所用的樣本是隨機樣本 • 用樣本比例估計母體比例的依據。

  13. 好樣本和壞樣本 • 好樣本:隨機樣本 • 常見隨機樣本的例子: • 簡單隨機樣本(SRS, simple random sample) • 比如樂透彩所抽出的號碼 • 壞樣本: • 方便樣本 • 自發性回應樣本(扣應)

  14. 三、信賴區間的簡介 • 某次民意調查發表之記者會特安排在十月四日「世界動物日」當天,以凸顯對解決流浪狗問題的迫切性,在 1111 份回收問卷中,其中的一個問題為: • 您願不願意以實際行動來照顧住家附近的流浪狗/貓? 願意 140 (12.6%) 不願意 971 (87.3%) • 以樣本比例 來代表母體的真正比例 p合理嗎? 願意照顧流浪動物的民眾真的是 12.6% 嗎?

  15. 區間估計 • 92年7月19日,某報就『成年人對公立大學學費是否太貴』的議題進行調查,於20日報導:『成功訪問了871位成年人。在百分之九十五的信心水準下,有46%民眾認為學費太貴,抽樣誤差在正負 3.3% 之內』,而該調查是以台灣地區住宅電話為母體作尾數兩位隨機抽樣。 • 這並不代表「認為公立大學學費太貴的民眾比例在(0.427,0.493)這個區間範圍內」 • 我們每次做抽樣調查時都可以做出一個區間估計,而每次做出區間會涵蓋實際比例的機率為95%。 • 但是,這些區間與 95% 如何求出?

  16. 信賴區間的實驗 • 老師為全班每個同學各準備一籤筒,事先不讓學生知道籤筒裡放了幾支籤,內含若干有獎籤,然後做一次實驗:每個同學在籤筒內抽取一支籤,記錄是否為有獎籤後放回,連續抽取 20 次。記錄內容必為下列表格其中一列:

  17. 區間公式對照表(n =20)區間半徑 = 舉例:若一學生抽 20 次得到 9 次有獎籤,則中籤比例為 ,區間半徑為 區間為[ 0.45-0.218, 0.45+0.218 ],即 [ 0.232, 0.668 ]

  18. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

  19. 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 0 • 0.1 • 0.2 • 0.3 • 0.4 • 0.5 • 0.6 • 0.7 • 0.8 • 0.9 • 1 信賴區間圖 • 右圖中,全班 40 個學生每個人都得到一個區間,如果老師事先知道 p = 0.6,那麼從圖中可知,有 35 個區間包含真實的 p值。 • 全班 40 個學生包含 p值區間個數的期望值為 40  0.95 = 38 個

  20. 的公式是如何得來的? • 首先, 1.96 的由來是因為在平均值前後1.96 個標準差所佔比例約為 95%。 • 單獨一次抽籤的標準差是 , 平均 n次抽籤的標準差是 。 • 所以 是指「在 p 前後 1.96 個標準差的範圍」 。

  21. 以真實中獎機率 0.6 為例,20 次抽籤抽中有獎籤的比率必為 0, 0.05, 0.1, …, 1.0 其中之一,舉例:抽中 9 次的中獎比率為 0.45,此事件發生機率為 • ≒ 0.071。(上圖左邊第二條綠色長條) • 上圖將每一種中獎比率與其發生機率作成直方圖,而綠色區域是 0.6 前後 1.96 個標準差的區域。

  22. 現在用常態分配去近似二項分配,每個同學 20 次抽籤的結果,抽中有獎籤的比率必為圖中 x 坐標之一,且此比率落在綠色區域的機率為 0.95。 • 每個同學 20 次抽籤抽中有獎籤比率的結果好比是在擲一枚出現正面機率是 0.95 的銅板,成功擲出正面(抽中有獎籤比率落在綠色區域)的機率是 0.95。

  23. 若樣本平均 落在 區間內, • 那麼區間 • 會涵蓋真實值 p 。

  24. 區間公式對照表(n =50)區間半徑 =

  25. 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 0 • 0.1 • 0.2 • 0.3 • 0.4 • 0.5 • 0.6 • 0.7 • 0.8 • 0.9 • 1 信賴區間圖 • 右圖中,全班 40 個學生每個人都得到一個區間,如果老師事先知道 p = 0.6,那麼從圖中可 知,有 37 個區間包含真實的 p值。 全班 40 個學生包含 p值 區間個數的期望值為 40  0.95 = 38 個 • n = 50 時,區間半徑成為 因此區間長度變短了。

  26. 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 0 • 0.1 • 0.2 • 0.3 • 0.4 • 0.5 • 0.6 • 0.7 • 0.8 • 0.9 • 1 區間比較圖 • 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 0 • 0.1 • 0.2 • 0.3 • 0.4 • 0.5 • 0.6 • 0.7 • 0.8 • 1 • 0.9 n =20 n = 50

  27. 信賴區間的解讀 • 全班依照這樣的區間公式求出的 40 個區間,不論 n =20 或 n = 50 的模擬實驗結果,可以發現並非一定有 95% 的區間會涵蓋實際值 p。 • 全班執行這個實驗,正如 40 個學生每人都在擲一枚出現正面機率為 0.95 的硬幣,我們只知道此實驗出現正面個數的期望值為 40  0.95 = 38 個,並不能保證一定出現 38 個正面。 • 每個學生做出的區間,只可能有兩種情形:包含真實 p值,或不包含真實 p值。因此一旦做出區間後,並不能說「真實 p值在此區間的機率為 95%」

  28. n = 20 與 n = 50 的區間估計的差異 • 因區間半徑等於 , 所以較大的 n值具有較小的區間半徑,也意味著有較佳區間估計的效果。 • 較大的 n值會導致此實驗的分配會較近似常態分配。

  29. 休息一下 • 做個例題

  30. 某校1000人一起做實驗,每個人均從已知籤筒(內有 5 支籤,其中 2 支是有獎籤)抽籤 n次,每次取出一支籤,取出後須放回。下面第一圖是 n = 50 時,每人抽中有獎籤比率與人數的分佈圖,第二圖則是 n =100 的分佈圖。試以此兩圖回答下面三題:

  31. 下列敘述何者正確: • (1)在 n = 50 的實驗裡,一學生抽中有獎籤比率正好是 0.4 的機率為 。 • 答:(○)一學生抽中有獎籤比率正好是 0.4 是指他抽 50 次籤中得有獎籤 20 次,因此這個事件的機率為 。

  32. (2) 比較 n = 50 與 n = 100 的實驗,發現抽中有獎籤比率在 0.28~0.52(含此兩值)之間的學生人數,在 n = 100的實驗裡學生人數較多。 • 答:(○) n = 50 的實驗裡,抽中有獎籤比率小於 0.28 的學生數為 15+8+3+1+1=28,大於 0.52 的學生數為 15+8+4+2+1=30,因此在 0.28~0.52 之間的學生人數為1000-28-30=948。同理, n = 100 的實驗裡,在 0.28~0.52 之間的學生人數為1000-2-1-1-3-1-1=991。

  33. (3) 在 n = 50 的實驗裡抽中有獎籤比率在0.38~0.42(含此兩值)之間的學生人數較 n = 100 的實驗裡抽中有獎籤比率在0.38~0.42(含此兩值)之間的人數多,也就是說 n = 50 的圖形較 n = 100 學生人數分佈更往 0.4 集中。 • 答: ( × ) n = 50 的實驗裡,抽中有獎籤比率在 0.38~0.42 之間的學生人數為111+115+109=335。同理, n = 100 的實驗裡,在 0.38~0.42 之間的學生人數為77+80+81+79+74=391,因此 n = 100 學生人數分佈更往 0.4 集中。

  34. (4) 在 n = 100的實驗裡,全校抽中有獎籤比率在 0.31~0.49(含此兩值)之間的學生數為 950 人。 • 答:(○)n = 100 的實驗裡,抽中有獎籤比率小於 0.31 的學生數為 10+6+4+2+1+1=24,大於 0.49 的學生數為 10+7+4+3+1+1=26,因此在 0.31~0.49 之間的學生人數為1000-24-26=950。

  35. (5) 當 n = 10000 時,我們可以預期抽中有獎籤比率在 0.31~0.49(含此兩值)之間的學生數大於 950 的機率會很大。 • 答:(○) n = 50 的實驗裡,抽中有獎籤比率在 0.31~0.49 之間的學生人數為1000-96-96=808,顯示 n 值越大時,可預期抽中有獎籤比率在 0.31~0.49 之間的學生數會越大。 • 提示:此實驗的標準差為

  36. 若已知信心水準 90% 的區間半徑公式是 • (其中 是每人抽中有獎籤的比率),我們將 n = 50 的區間半徑列表如下:(其中區間半徑值是四捨五入至小數點後第四位的近似值) • 利用下表,每個學生均可做出一個信心水準為 90% 的信賴區間,試問下列敘述何者正確?

  37. (1) 在 n = 50 的實驗裡,抽中有獎籤比率是 0.5 的學生所做出的區間半徑一定大於其他抽中比率的學生做出的區間半徑。 • 答:(○)從表中即可看出或由 可看出

  38. (2) 若有一學生抽取 50 次後抽中有獎籤比率是 0.3,那麼 90% 的信心水準的意義是指,真實中獎機率 0.4 落在此學生得到的信賴區間內的機率是 0.90。 • 答:( × )雖然該生所做出的區間為 [0.3-0.1069, 0.3+0.1069 ],即[ 0.1931, 0.4069 ],已經知道此區間涵蓋真實的中獎機率 0.4,因此我們不能再說「0.4 落在此學生得到的信賴區間內的機率是 0.90 」。

  39. (3)90% 的信心水準的意義是指全校 1000人在 n = 50 的實驗裡,一定會有 900 人的信賴區間涵蓋真實中獎機率 0.4。 • 答:( × )90% 的信心水準的意義是指全校 1000 人在 n = 50 的實驗裡,在 1000 個信賴區間中,涵蓋真實中獎機率 0.4 區間個數的期望值為 900 個。正如投擲一枚公正銅板 1000 次,得到正面次數的期望值為 500 次,但不是一定正好得到 500 次正面。

  40. (4) 若在 n = 50 的實驗裡要求信心水準提高時,我們必須將區間半徑增大。 • 答:(○)要求信心水準提高是指,在期望值前後取更大的區間範圍,才能使抽中有獎籤比率落在此區間的機率變大,這也是說,我們必須將區間半徑增大。舉一例,若信心水準是 95%,區間公式須變為 • 。

  41. (5)在 n = 100 的實驗裡,因區間半徑 • 較 n = 50 實驗的區間半徑 • 小,所以信心水準隨著下降。 • 答:( × )這是錯誤的觀念,由於這兩個公式都是指期望值前後 1.65 個標準差的範圍,此區域占全部約 90%,因此信心水準均為 90%。

  42. 從 n = 50 實驗的結果(第一圖)及區間公式表可知,這次實驗每個學生所做的信賴區間可以涵蓋真實中獎機率 0.4 的人數有個。 • 答:(890 個)從區間公式表可知,抽中比率是 0.30 的區間為 [ 0.1931, 0.4069 ],抽中比率是 0.50 的區間為 [ 0.3833, 0.6167 ]。再由第一圖知,抽中比率在0.30~ 0.50 的人數為 1000-54-56=890

  43. 民意調查的意義 • 常常在民意調查的報導中有如下的敘述: • 本項調查是由XX民意調查中心在XX年X月X日進行,以隨機跳號抽樣及電腦輔助電話訪問方式,訪問台灣地區 1068 位 20 歲以上的民眾,在 95% 的信心水準下抽樣誤差為 ±3%。

  44. 如果這項調查的結果對於候選人A的支持度為32%,候選人B的支持度為30%,這代表候選人A支持度的95%信賴區間為[29%, 35%],候選人B支持度的95%信賴區間為[27%, 33%]。這兩個區間有很大的重疊,因此選舉結果是有可能發生逆轉,這也是在相同的信心水準下,為何信賴區間的長度(即所謂抽樣誤差)要越小越好,而上面已提供了一個方法—— • 提高抽樣的樣本數 n。

  45. 如何得到民意調查的抽樣數 n = 1068? • 因 ,所以區間半徑 。若要求抽樣誤差不超過 d,則 即 。 以此例而言,若選擇抽樣誤差 d等於 0.03,因 95% 的信心水準下, z0.975 ≒ 1.96,則 n 1068。

  46. 但在相同的信心水準下,若選擇抽樣誤差 d小於 0.01,則 n 9604 。以成本的角度來看,為了讓抽樣誤差從 3% 減少到 1%,與其增加 9 倍的樣本,不如更謹慎的規劃及更好的抽樣方法來得有效。

  47. 最近實例 • 如果明天就投票,推估蘇貞昌會獲得五成一選民支持,四成九挺郝。 • 1073位設籍北市的成年民眾,另有496人拒訪; • 在95%的信心水準下,抽樣誤差在正負3%以內。 • 調查以北市住宅電話為母體作尾數兩位隨機抽樣,並依據選區內成年民眾之性別及年齡結構進行加權。

More Related