1 / 23

Graph Classes and Subgraph Isomorphism

Graph Classes and Subgraph Isomorphism. Toshiki Saitoh ERATO, Minato Discrete Structure Manipulation System Project, JST . Joint work with Yota Otachi , Shuji Kijima, and Takeaki Uno. アルゴリズム研究会 2010 年 1 1 月 19 日. Subgraph Isomorphism Problem.

faraji
Télécharger la présentation

Graph Classes and Subgraph Isomorphism

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Graph Classes andSubgraph Isomorphism ToshikiSaitoh ERATO, Minato Discrete Structure Manipulation System Project, JST Joint work with YotaOtachi, Shuji Kijima, and Takeaki Uno アルゴリズム研究会2010年11月19日

  2. Subgraph Isomorphism Problem • Input: Two graphs G=(VG, EG) and H=(VH, EH) • |VH|≦|VG| and |EH|≦|EG| • Question: Is H a subgraph isomorphic of G? • Is there an injective map f from VH to VG • {f(u), f(v)}∈EG holds for any {u, v}∈EH Example Yes No Graph G Graph H1 Graph H2

  3. Subgraph Isomorphism Problem • Input: Two graphs G=(VG, EG) and H=(VH, EH) • |VH|≦|VG| and |EH|≦|EG| • Question: Is H a subgraph isomorphic of G? • Is there an injective map f from VH to VG • {f(u), f(v)}∈EG holds for any {u, v}∈EH • Application • LSI design • Pattern recognition • Bioinfomatics • Computer vision, etc.

  4. Known Result • NP-complete in general • Containsmaximum clique, Hamiltonian path, Isomorphism problem etc. • Graph classes • Outerplanar graphs • Cographs • Polynomial time algorithms • k-connected partial k-trees • Tree • H is forest ⇒ NP-hard • 2-connected series-parallel graphs

  5. G, H: Connected G, H∈GraphclassC Perfect Graph Classes HHD-free Comparability Chordal Distance-hereditary Bipartite Cograph NP-hard Ptolemaic Permutation Interval Bipartite permutation Proper interval Trivially perfect NP-hard Chain Tree Co-chain Threshold

  6. Proper Interval Graphs (PIGs) • Have proper interval representations • Each interval corresponds to a vertex • Two intervals intersect ⇔ corresponding two vertices are adjacent • No interval properly contains another Proper interval graph and its proper interval representation

  7. Characterization of PIGs • Every PIG has at most 2 Dyck paths. • Two PIGs G and H are isomorphic ⇔ the Dyck path of G is equal to the Dyck path of H. • A maximum clique of a PIG G corresponds to a highest pointof a Dyck path. • If a PIG G is connected, G contains Hamilton path. We thought that the subgraph isomorphism problem of PIGs is easy. NP-complete! But,

  8. Problem Connected • Input: Two proper interval graphs G=(VG, EG) and H=(VH, EH) • |VH|≦|VG| and |EH| < |EG| • Question: Is H a subgraph isomorphic of G? |VH| = |VG| NP-complete Reduction from 3-partition problem • 3-Partition • Input: SetA of 3m elements, a bound B∈Z+, and a size aj∈Z+ for each j∈A • Each aj satisfies that B/4 < aj < B/2 • Σj∈Aaj = mB • Question: Can A be partitioned intom disjoint sets A(1), ... , A(m), for 1≦i≦m, Σj∈A(i)aj = B

  9. Proof (G and H are disconnected) Cliques of size B G … m … … … … …

  10. Proof (G and H are disconnected) Cliques of size B G … m H Cliques … a1 a2 a3 a3m

  11. Proof (G and H are disconnected) Cliques of size BM G … … m (M=m10) H … … a3M a3mM a1M a2M

  12. m>2 Proof (G and H are disconnected) Cliques of size BM+6m2 G … … … … … … … 3m2 (M=m10) H … a3M a3mM a1M a2M

  13. m>2 Proof (Gis connected) Cliques of size BM+6m2 G … … … … … … … … … 3m2 Cliques of size 6m2 (M=m10) H … a3M a3mM a1M a2M

  14. m>2 Proof (Gis connected) Cliques of size BM+6m2 G … … … … … … … … … 3m2 Cliques of size 6m2 (M=m10) … … … … … … … … … … … …

  15. m>2 Proof (Gis connected) Cliques of size BM+6m2 G … … … … … … … … … 3m2 Cliques of size 6m2 (M=m10) H … a3M a3mM a1M a2M

  16. m>2 Proof (G and H are connected) Cliques of size BM+6m2 G … … … … … … … … … 3m2 Cliques of size 6m2 (M=m10) H Paths of length m … … … a3M a3mM a1M a2M

  17. m>2 Proof (G and H are connected) … … … (M=m10) H Paths of length m … … … … … … … a3M a3mM a1M a2M

  18. m>2 Proof (G and H are connected) Cliques of size BM+6m2 G … … … … … … … … … 3m2 Cliques of size 6m2 (M=m10) H Paths of length m … … … a3M a3mM a1M a2M

  19. m>2 Proof (|VG|=|VH|) Cliques of size BM+6m2 G … … … … … … … … … 3m2 Cliques of size 6m2 (M=m10) H Paths of length m 6m3-m2-3m+2 … … … … a3M a3mM a1M a2M

  20. G, H: connected G, H∈GraphclassC Perfect Graph Classes HHD-free Comparability Chordal Distance-hereditary Bipartite Cograph NP-hard Ptolemaic Permutation Interval Bipartite permutation Proper interval Trivially perfect NP-hard Chain Tree Co-chain Threshold

  21. N(v): neighbor set of v N[v]:closed neighbor set of v Threshold Graphs • A graph G=(V, E) is a threshold • There are a real number S and a real vertex weight w(v) such that (u,v) ∈E⇔w(u)+w(v)≧S Lemma [Hammer, et al. 78] • G=(V, E): graph, (d(v1), d(v2), …, d(vn)): degree sequence of G. • G is a threshold • ⇔ N[v1]⊇N[v2]⊇… ⊇N[vi]⊇N(vi+1)⊇… ⊇ N(vn) v1 v7 v2 Degree sequence: 6 6 4 3 3 2 2 v1, v2, v3, v4, v5, v6, v7 v6 v3 N[v1]⊇N[v2]⊇N[v3]⊇N(v4)⊇N(v5)⊇N(v6)⊇N(v7) v5 v4 Graph G

  22. Polynomial Time Algorithm • Finds degree sequences of G and H • G : ( d(v1), d(v2), …, d(vn) ) • H : ( d(u1), d(u2), …, d(un’) ) • fori=1ton’do • if d(vi) < d(ui) then return No! • return Yes! Yes No Graph H2 Graph H1 G: 6 6 4 3 3 2 2 H2: 5 5 5 3 3 3 G: 6 6 4 3 3 2 2 H1: 6 5 3 3 2 2 1 Graph G

  23. G, H: connected G, H∈GraphclassC Perfect Our Results HHD-free Comparability Chordal Distance-hereditary Bipartite Cograph NP-hard Ptolemaic Permutation Interval Bipartite permutation Proper interval Trivially perfect NP-hard Chain Tree Threshold Co-chain

More Related