1 / 28

Hypernuclear experiments at K1.1 in future Tohoku University H. Tamura

Hypernuclear experiments at K1.1 in future Tohoku University H. Tamura. Contents. 1. Gamma-ray spectroscopy of L hypernuclei at K1.1 2. Light S hypernuclei by (K - , p ±,0 ) at K1.1 3. g decay of S hypernuclei at K1.1

fayola
Télécharger la présentation

Hypernuclear experiments at K1.1 in future Tohoku University H. Tamura

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hypernuclear experimentsat K1.1 in future Tohoku University H. Tamura

  2. Contents 1. Gamma-ray spectroscopy of L hypernuclei at K1.1 2. Light S hypernuclei by (K-,p±,0) at K1.1 3. g decay of S hypernuclei at K1.1 Coulomb-assisted hybrid states -> HR pion line (Noumi-san)

  3. 1. Gamma-ray spectroscopy of L hypernuclei at K1.1

  4. SMF: Muon filter to suppress K- ->m-n SDC3,4: Large-size (2.0mx0.8m), fine cell (1~2cm) To be constructed SP0: Veto counters to reject K- -> p-p0 Lower half Beam and Setup for g spectroscopy • Spectrometer: SKS (modified) Dp ~ 4 MeV (FWHM) W ~ 110 msr p- • Hyperball-J e ~ 7% at 1 MeV K- 1.5 GeV/c • Beamline: K1.8 0.5x106 K-/spill at 1.5 GeV/c (9mA) K/p >> 1 K1.8

  5. Reaction / p (GeV/c) ; Beamline ; Features (1) Complete study of light (A<30) hypernuclei (K-,p-) p= 1.1 and 0.8 ; K1.1 ; gg coin, angular corr. , B(E2),.. (2) Systematic study of medium and heavy hypernuclei (K-,p-) p=0.8-1.8 ; K1.1 and K1.8; p-wave LN interaction (3) Hyperfragments K--in-beam (stopped K-) p=0.8 ; K1.1 ; p/n-rich hypernuclei, (4) n-rich and mirror hypernuclei (K-,p0) p= 1.1 and 0.8 ; K1.1 ; charge sym.break., shrinkage of n-halo, (5) B(M1) using Doppler shift (K-,p-) p= 1.1 and (p+,K+) p= 1.05 ; K1.1 ; mL in nucleus (6) B(M1) using g-weak coincidence (K-,p-) p= 1.1 and 0.8 ; K1.1 ; r, T dependence ofmL in nucleus …,20LNe, 23LNa, 27LAl / 28LSi LOI for g spectroscopy (2003) Partly in E13 LN interaction (LN-SN, p-wave, ..) Shrinkage, collective motion, ... “Table of Hyper-Isotopes” 89LY, 139LLa, 208LPb 8LLi, 8LBe, 9LB,… 7LHe, 9LLi, 12LB... Shirotori’s talk Partly in E13 7LLi and heavier

  6. E03, E07 S=-2 Reaction / p (GeV/c) ; Beamline ; Features (7) X atom X rays (K-,K+) p=1.8 GeV/c; K1.8 ; XN interaction (8) LL-hypernuclei (K-,K+) p=1.8 GeV/c; K1.8 ; LL, XN-LL interactions

  7. eh 2mqc (5),(6) B(M1) measurements mL in nucleus -> medium effect of baryons Constituent quark • mq= • mq changes in nucleus? Partly in E13 • Doppler shift attenuation method [same as B(E2), established] for light hypernuclei; Weak K- or p+ beam usable • g-weak coincidence method [new, only possible at J-PARC] • for 12LC and heavy hypernuclei; Intense K- beam necessary

  8. B(M1) measurement by g-weak coincidence method 12LC case 900 hours, 9x106 K-/spill at K1.1 (50 GeV full beam) -> 5% stat. error of B(M1)

  9. Best K- beam momentum K1.1: More yield x4 Less Doppler shift Need to move SKS to K1.1 (and construct “SKS2” at K1.8) or construct another SKS at K1.1 K- + n -> L + p- • = 20 msr (SPESII) • = 100 msr (SKS) Both spin-flip and nonflip states should be produced. -> pK = 1.1 or 1.5 GeV/c N(1.1) = 2.0x106/spill at K1.1 N(1.5) = 0.5x106/spill at K1.8 (30 GeV 9mA) pK = 1.1 GeV/c : K1.1 + “SKS” (ideal) pK = 1.5 GeV/c : K1.8 + SKS (realistic) High K/p ratio to minimize radiation damage to Ge detectors -> Double-stage separation. K1.8BR is not good.

  10. Light S hypernuclei by (K-,p±,0) at K1.1

  11. D SL SN T (MeV) ND -0.048 -0.131 -0.264 0.018 NF 0.072 -0.175 -0.266 0.033 NSC89 1.052 -0.173 -0.292 0.036 NSC97f 0.754 -0.140 -0.257 0.054 ( “Quark” 0.0 -0.4 ) Exp. 0.4 -0.01 -0.4 0.03 G-matrix calc. by Yamamoto Strength equivalent to quark-model LS force by Fujiwara et al. Quark DOF really necessary in BB interaction? • LN spin-orbit force(L-spin-dependent LS force ~ 0) -- 9LBe, 13LC g-spectroscopy data • SN (T=3/2,S=1) strong repulsion (quark Pauli) -- 28Si(p-,K+) suggests strongly repulsive S-nuclear pot. • Strong attraction in H dibaryon channel ~ Attraction in LL/ XN / SS (T=0,S=0) state -- No H, weak attraction in LL

  12. S hypernuclei and SN interaction • 4SHe bound state -> T=1/2 attractive 4He(K-,p+) -> T=3/2 repulsive • Lane term (sSsN)(tStN) consistent with Nijmegen interactions • No bound-state peaks in 6SLi, 7SLi, 9SBe, 12SC • S atomic data – attraction at outer nuclear region (not direct information) • 28Si,..(p-,K+) spectrum -> spin-averaged pot. strongly repulsive (~ +30 MeV) =>Lane term (sSsN)(tStN) (by p/r.. exchange) consistent, but strength of each spin-isospin channel and SN->LN not determined yet. T=3/2,S=3/2 channel strongly repulsive? (by quark Pauli) => More data for light (spin-isospin unsaturated) hypernuclei

  13. G-matrix results for various interactions Rijken et al., PRC59 (1999) 21 Rijken, Yamamoto PRC73 (2006) 044008 ESC04d 6.5 -21.0 -3.4 -20.2 24.0 -20.9 -26.0 fss2(quark) 6.7 -23.9 -5.2 -9.2 41.2 -1.4 7.5 Fujiwara et al., Prog.Part.Nucl.Phys. 58 (2007) 439 kf=1.35 fm-1 quark Pauli effect Lane term (sSsN)(tStN) by p/r exchange

  14. T=1/2, 3/2 S=0 4SHe by (K-,p) Substitutional (DL=0) state: n(s1/2)-1L(s1/21) T=1/2, 3/2 S=0 T=3/2 only S=0 Nagae et al., PRL 80 (1995) 1605 Large spin-isospin dependence(Lane term) Consistent with SN interaction in Nijmegen D model (I,S) = (3/2,0), (1/2,1) attractive, (3/2,1), (1/2,0) repulsive No peaks in other S hypernuclei Width (SN->LN) > 10 MeV in general-- spectroscopy difficult T=3/2 only S=0 Hayano et al., PLB B231 (1989) 355

  15. Bart et al. PRL 83 (1999) 5238 Other S hypernuclei? 4SHe No S bound states in A>4 6SLi Iwasaki Ph.D thesis (1987) 12SBe 9SBe Yamada, Ikeda 7SLi has a bound state for ND but no bound state for NF.

  16. Repulsive potential? US ~ +30 MeV Data: Noumi et al., PRL 87 (2002) 072301 Calc: Kohno et al., PRC 74 (2006) 064613

  17. Previous 3He(K-,p-) data at BNL E774

  18. Proposed 3He experiment • 3He (K-,p±,0L) at threshold, pK~0.5~0.6 GeV/c (q < 50 MeV/c) • 3SHe, 3SH, 3Sn : different combination of (TNS,SNS ) = (3/2,1), (3/2,0), (1/2,1), (3/2,0) from 4SHe, 4Sn • 3-body systems can be accurately calculated -> direct comparison with various interactions (how sensitive? – theoretical calculations essential) • Apparatus: Low momentum beam line (K1.1BR) + beam spectrometer + SPESII and p0 spectrometer + L tagger (CDS) Excited states (p states) of 4SHe by 4He (K-,p-L) and 12SC by 12C(K-,p-L) , pK~1.1 GeV/c at q~10o (q~250 MeV/c) Koike-Harada (NPA611(1996)461) “Unstable bound states” ES (G) SAP-1(ND) SAP-F(NF) 3SHe (T=1,S=1/2) --- +1.77 (7.58) MeV 3S0H (T~1,S=1/2) +0.01 (1.95) +0.63 (8.2) MeV 3Sn (T=1,S=1/2) --- +0.55 (9.05) MeV Spectral shapes should be calculated.

  19. Experiment • Beam spectrometer ( DpFWHM <1.5 MeV/c at 600 MeV/c ) in place of K1.1BR B3 • 3He target • L tagger => CDS • p± spectrometer (DpFWHM <1.5 MeV/c at 500 MeV/c) => SPESII • p0 spectrometer (DpFWHM ~ 3 MeV/c at 500 MeV/c) Yield (K-, p±): NK-・ds/dW・DW・Ntarget・e(Ltag) ・e = 5x105 /spill・50x10-30cm2/sr・0.02sr・0.09g/cm3/ 3・10cm・ 6x1023 ・0.3・0.5 => 1400 counts/100hours ->Lower beam momentum? Yield (K-, p±0): => ~100 counts/100hours

  20. tagging is essential Data: Nagae et al., PRL 80 (1995) 1605 calc: Harada, PRL 81(1998) 5287

  21. 3. g decay of S hypernuclei at K1.1

  22. S = 1 S = 0 u u d d + g L S S = 1/2 s S = 1/2 s Spin-flip of u/d quarks – large medium effect ? G∝ B(M1) ∝|〈 |m| 〉|2 is sensitive to w.f. S = 0 S = 0 u d u d + g L L s s S = 1/2 S = 1/2 Spin-flip of s quark – small medium effect ? Spin-flip M1 transitions

  23. How large is the effect? • Shift of constituent quark mass in a nucleus Dmu,d ~ -20%, Dms /ms~ -4% -> Dm (S)~ 20%, Dm (L)~ 4% DB(M1) for S~ +40%, DB(M1) for L~ +8% • Quark Cluster Model Takeuchi et al., N.P. A481(1988) 639 dm/m : 4LHe(1+) -1% ~ -2%, larger by S mixing 4S+Li(1+) -40% ~ -100% b = 0.6 fm -> 0.8 fm, m becomes twice large.

  24. Measurement ofG(S0->Lg) in a nucleus S in nucleus = S hypernuclear bound states -> 4SHe Free S0 -> Lg 100%,Eg = 74 MeV Gfree S->Lg = 1 / 7.4x10-20 sec-1 ~ 9x10-3 MeV GSN->LN ~ 10 MeV for 4SHe => BR(S0->Lg in nucleus) ~GS->Lg/ GSN->LN ~ 0.001 (K-,p-) reaction at 600 MeV/c using K1.1BR ds/dW (4SHe)~ 100 mb/sr (Nagae et al.) Yield: NK-・ds/dW・DW・BR・Ntarget・BR(L->np0)・e     = 5x105 /spill・100x10-30・0.02・0.001・0.12g/cm3/ 4・20cm・6x1023 ・0.3・0.5 => 56 counts/1000hour Background: QF S0 escape, S0 -> Lg (-BS>0 only) p0 -> g g from L -> n p0 (Eg ~ 50~100 MeV) => Tag 3 energetic (> 50 MeV) g rays => cover the target region with a calorimeter Theoretical calculation necessary – how large change is expected?

  25. T=1/2, 3/2 S=0 4SHe by (K-,p) Substitutional (DL=0) state: n(s1/2)-1L(s1/21) T=1/2, 3/2 S=0 T=3/2 only S=0 Nagae et al., PRL 80 (1995) 1605 Large spin-isospin dependence(Lane term) Consistent with SN interaction in Nijmegen D model (I,S) = (3/2,0), (1/2,1) attractive, (3/2,1), (1/2,0) repulsive No peaks in other S hypernuclei Width (SN->LN) > 10 MeV in general-- spectroscopy difficult T=3/2 only S=0 Hayano et al., PLB B231 (1989) 355

  26. Harada, PRL 81(1998) 5287

  27. S0 escape 0+ Expected 3g-tagged spectrum (イメージ) • S0 → L g • → np0 • → gg Assuming that 3HeL, pdL, ppnL never emit 3 energetic g’s

  28. Summary • g-ray spectroscopy of L hypernuclei at K1.1 • Various experiments using SKS + Hyperball-J • S hypernuclei at K1.1BR • 3He(K-,p) for SN spin-isospin dependence • g decay of S hypernuclear bound states • New apparatus to be build 2nd SKS (or “SKS2” at K1.8) Beam spectrometer for K1.1BR p0 spectrometer Calorimeter (crystal barrel)

More Related