1 / 53

Josephson qubits

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France ), Quantronics group. Outline. Lecture 1: Basics of superconducting qubits. Lecture 2: Qubit readout and circuit quantum electrodynamics. Lecture 3: 2- qubit gates and quantum processor architectures.

feivel
Télécharger la présentation

Josephson qubits

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group

  2. Outline Lecture 1: Basics of superconductingqubits Lecture 2: Qubitreadout and circuit quantum electrodynamics Lecture 3: 2-qubitgates and quantum processor architectures 1) Two-qubitgates : SWAP gate and Control-Phase gate 2) Two-qubit quantum processor : Groveralgorithm 3) Towards a scalable quantum processor architecture 4) Perspectives on superconductingqubits

  3. Requirementsfor QC High-Fidelity Single Qubit Operations High-FidelityReadout of IndividualQubits 0 1 Deterministic, On-Demand EntanglementbetweenQubits III.1) Two-qubitgates

  4. Couplingstrategies 1) Fixedcoupling F Entanglement on-demand ??? « Tune-and-go » strategy Couplingactivated in resonance for t Entangledqubits Interaction effectively OFF Coupling effectively OFF III.1) Two-qubitgates

  5. Couplingstrategies 2) Tunablecoupling l Entanglement on-demand ??? A) Tune ON/OFF the couplingwithqubits on resonance Couplingactivated for t by lON Entangledqubits Interaction OFF (lOFF) Coupling OFF (lOFF) III.1) Two-qubitgates

  6. Couplingstrategies 2) Tunablecoupling Entanglement on-demand ??? B) Modulatecoupling IN THIS LECTURE : ONLY FIXED COUPLING Coupling ON by modulatingl Coupling OFF (lOFF) Coupling OFF (lOFF) III.1) Two-qubitgates

  7. How to couple transmonqubits ? 1) Direct capacitive coupling FI FII Vg,I Vg,II couplingcapacitor Cc (note : idem for phase qubits)

  8. How to couple transmonqubits ? 2) Cavitymediatedqubit-qubitcoupling J. Majer et al., Nature 449, 443 (2007) R Q II Q I D>>g g2 g1 Q II Q I geff=g1g2/D III.1) Two-qubitgates

  9. iSWAPGate « Natural » universalgate : On resonance, ) ( III.1) Two-qubitgates

  10. Example : capacitivelycoupledtransmonswithindividualreadout (Saclay, 2011) 1 mm readout resonator qubits fast flux line couplingcapacitor frequency control Josephson junction coupling capacitor 200 µm 50 µm λ/4 λ/4 JJ Transmon qubit i(t) ReadoutResonator

  11. Example : capacitivelycoupledtransmonswithindividualreadout drive & readout qubit frequency control 50 µm III.1) Two-qubitgates

  12. Spectroscopy n01I 5.16 n01II 2g/p = 9 MHz ncI 5.14 ncII frequencies(GHz) 5.12 5.10 fI/f0 0.379 0.376 fI,II/f0 A. Dewes et al., in preparation III.1) Two-qubitgates

  13. SWAP betweentwotransmonqubits 6.82 GHz QB I Drive Xp 6.67 GHz QB II 6.42 GHz 5.32GHz QB II f01 6.03GHz QB I 5.13 GHz Swap Duration Raw data Pswitch (%) 0 100 Swap duration (ns) 200 III.1) Two-qubitgates

  14. SWAP betweentwotransmonqubits 6.82 GHz QB I Drive Xp 6.67 GHz QB II 6.42 GHz 5.32GHz QB II f01 6.03GHz QB I 5.13 GHz Swap Duration 01 10 Data corrected from readout errors Pswitch (%) 00 Swap duration (ns) 0 100 200 III.1) Two-qubitgates

  15. How to quantifyentanglement ?? Need to measurerexp Quantum state tomography |0> Z X Y |1> III.1) Two-qubitgates

  16. How to quantifyentanglement ?? Need to measurerexp Quantum state tomography |0> Z p/2(X) X Y |1> III.1) Two-qubitgates

  17. How to quantifyentanglement ?? Need to measurerexp Quantum state tomography |0> Z p/2(Y) X Y |1> M. Steffen et al., Phys. Rev. Lett. 97, 050502 (2006) III.1) Two-qubitgates

  18. How to quantifyentanglement ?? readouts tomo. iSWAP Z X,Y I II I,X,Y I II 60 80ns 20 40 0 3*3 rotations*3 independentprobabilities (P00,P01,P10) = 27 measurednumbers Fit experimentaldensitymatrixrexp Computefidelity III.1) Two-qubitgates

  19. How to quantifyentanglement ?? |10> |01> |00> switchingprobability |11> swap duration (ns) ideal |00> measured |01> F=94% F=98% |10> |11> A. Dewes et al., in preparation III.1) Two-qubitgates

  20. SWAP gate of capacitivelycoupled phase qubits M. Steffen et al., Science 313, 1423 (2006) F=0.87 III.1) Two-qubitgates

  21. The Control-Phase gate Anotheruniversal quantum gate : Control-Phase Surprisingly, alsoquitenaturalwithsuperconducting circuits thanks to theirmulti-level structure F.W. Strauch et al., PRL 91, 167005 (2003) DiCarlo et al., Nature 460, 240-244 (2009) III.1) Two-qubitgates

  22. Control-Phase withtwocoupledtransmons DiCarlo et al., Nature 460, 240-244 (2009) III.1) Two-qubitgates

  23. Spectroscopy of two qubits + cavity right qubit Qubit-qubit swap interaction left qubit Cavity-qubit interaction Vacuum Rabi splitting cavity Flux bias on right transmon (a.u.) (Courtesy Leo DiCarlo) III.1) Two-qubitgates

  24. One-qubit gates: X and Y rotations z Preparation 1-qubit rotations Measurement y x cavity I Flux bias on right transmon (a.u.) (Courtesy Leo DiCarlo) III.1) Two-qubitgates

  25. One-qubit gates: X and Y rotations z Preparation 1-qubit rotations Measurement y x cavity I Flux bias on right transmon (a.u.) (Courtesy Leo DiCarlo) III.1) Two-qubitgates

  26. One-qubit gates: X and Y rotations z Preparation 1-qubit rotations Measurement y x cavity Q Fidelity = 99% see J. Chow et al., PRL (2009) Flux bias on right transmon (a.u.) III.1) Two-qubitgates

  27. Two-qubit gate: turn on interactions Conditional phase gate Use control lines to push qubits near a resonance cavity Flux bias on right transmon (a.u.) (Courtesy Leo DiCarlo) III.1) Two-qubitgates

  28. Two-excitation manifold of system Two-excitation manifold • Avoided crossing (160 MHz) Flux bias on right transmon (a.u.) (Courtesy Leo DiCarlo) III.1) Two-qubitgates

  29. Adiabatic conditional-phase gate 2-excitation manifold 1-excitation manifold Flux bias on right transmon (a.u.) (Courtesy Leo DiCarlo)

  30. Implementing C-Phase 11 Adjust timing of flux pulse so that only quantum amplitude of acquires a minus sign: C-Phase11 (Courtesy Leo DiCarlo) III.1) Two-qubitgates

  31. Implementing Grover’s search algorithm First implementation of q. algorithmwithsuperconductingqubits (usingCphasegate) DiCarlo et al., Nature 460, 240-244 (2009) “Find x0!” 0 II III I Position: “Find the queen!” (Courtesy Leo DiCarlo) III.2) Two-qubitalgorithm

  32. Implementing Grover’s search algorithm “Find x0!” 0 II III I Position: “Find the queen!” (Courtesy Leo DiCarlo) III.2) Two-qubitalgorithm

  33. Implementing Grover’s search algorithm “Find x0!” 0 II III I Position: “Find the queen!” (Courtesy Leo DiCarlo) III.2) Two-qubitalgorithm

  34. Implementing Grover’s search algorithm “Find x0!” 0 II III I Position: “Find the queen!” (Courtesy Leo DiCarlo) III.2) Two-qubitalgorithm

  35. Implementing Grover’s search algorithm Classically, takes on average 2.25 guesses to succeed… Use QM to “peek” inside all cards, find the queen on first try 0 II III I Position: “Find the queen!” (Courtesy Leo DiCarlo) III.2) Two-qubitalgorithm

  36. Grover’s algorithm Challenge: Find the location of the -1 !!!(= queen) “unknown” unitary operation: Previously implemented in NMR: Chuang et al. (1998) Linear optics: Kwiatet al. (2000) Ion traps: Brickman et al. (2005) oracle (Courtesy Leo DiCarlo) III.2) Two-qubitalgorithm

  37. Grover step-by-step Begin in ground state: oracle b c d f g DiCarlo et al., Nature 460, 240 (2009) e (Courtesy Leo DiCarlo)

  38. Grover step-by-step Create a maximal superposition:look everywhere at once! oracle b c d f g DiCarlo et al., Nature 460, 240 (2009) e (Courtesy Leo DiCarlo)

  39. Grover step-by-step Apply the “unknown”function, and mark the solution oracle b c d f g DiCarlo et al., Nature 460, 240 (2009) e (Courtesy Leo DiCarlo)

  40. Grover step-by-step Some more 1-qubitrotations… Now we arrive in one of the four Bell states oracle b c d f g DiCarlo et al., Nature 460, 240 (2009) e (Courtesy Leo DiCarlo)

  41. Grover step-by-step Another (but known) 2-qubit operation now undoes the entanglement and makes an interferencepattern that holds the answer! oracle b c d f g DiCarlo et al., Nature 460, 240 (2009) e (Courtesy Leo DiCarlo)

  42. Grover step-by-step Final 1-qubit rotations reveal the answer: The binary representation of “2”! Fidelity >80% oracle b c d f g DiCarlo et al., Nature 460, 240 (2009) e (Courtesy Leo DiCarlo)

  43. Towards a scalable architecture ?? 1) Resonator as quantum bus |yregister> …. |0> III.3) Architecture

  44. Towards a scalable architecture ?? 1) Resonator as quantum bus 2) Control-Phase Gatebetweenany pair of qubitsQi and Qj |yregister> …. |0> III.3) Architecture

  45. Towards a scalable architecture ?? 1) Resonator as quantum bus 2) Control-Phase Gatebetweenany pair of qubitsQi and Qj A) Transfer Qi state to resonator …. SWAP III.3) Architecture

  46. Towards a scalable architecture ?? 1) Resonator as quantum bus 2) Control-Phase Gatebetweenany pair of qubitsQi and Qj A) Transfer Qi state to resonator B) Control-Phase betweenQj and resonator …. C-Phase III.3) Architecture

  47. Towards a scalable architecture ?? 1) Resonator as quantum bus 2) Control-Phase Gatebetweenany pair of qubitsQi and Qj A) Transfer Qi state to resonator B) Control-Phase betweenQj and resonator C) Transfer back resonator state to Qi …. SWAP III.3) Architecture

  48. Problems of this architecture Uncontrolled phase errors 1) Off-resonantcouplingQk to resonator …. III.3) Architecture

  49. Problems of this architecture Uncontrolled phase errors 1) Off-resonantcouplingQk to resonator 2) Effective couplingbetweenqubits + spectral crowding geff geff …. III.3) Architecture

  50. RezQu (Resonator + zero Qubit) Architecture damped resonators memory resonators qubits q q q q q coupling bus resonator zeroing memory single gate frequency coupled gate measure (tunneling) (courtesy J. Martinis)

More Related