1 / 28

Joint Project : K ai Guo , Ulrich Schwarz, MPI CPfS Rainer Niewa, Dieter Rau, Univ. Stuttgart

High- pressure -high- temperature synthesis , characterization and q uantum-chemical calculations of metal nitrides. Joint Project : K ai Guo , Ulrich Schwarz, MPI CPfS Rainer Niewa, Dieter Rau, Univ. Stuttgart Richard Dronskowski , RWTH Univ. Aachen. 28. 09. 2012. Outline.

feoras
Télécharger la présentation

Joint Project : K ai Guo , Ulrich Schwarz, MPI CPfS Rainer Niewa, Dieter Rau, Univ. Stuttgart

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High-pressure-high-temperaturesynthesis, characterization and quantum-chemicalcalculationsofmetalnitrides Joint Project: Kai Guo, Ulrich Schwarz, MPI CPfS Rainer Niewa, Dieter Rau, Univ. Stuttgart Richard Dronskowski, RWTH Univ. Aachen 28. 09. 2012

  2. Outline γʹ-Fe4N, cubic Fe ② ② ε-Fe3N, hexagonal/trigonal Fe N ① ③ ζ-Fe2N, orthorhomic TM • Phase diagram of the binary system Fe-N. High-pressurebehaviorsand single-crystalgrowthofε-Fe3Nxunder high-pressure, high-temperature (HPHT). Phase transitionfromγʹ -Fe4N and ζ-Fe2N to ε-Fe3Nx and subsequent recrystalizationunder HPHT. Synthesis andcharacterizationofε-Fe2TMN (TM = Co, Ni), ε-Fe2IrNxandε-Fe3(N, C). Theoreticalpredictionofnewpernitrides2La3+(N2)2- (N2)4-. K.H. Jack, Proc. Roy. Soc. A 1951, 208, 200.

  3. 1. ε-Fe3Nx: high-pressurebehaviors Fe3N1.05±3O0.017±1 B0= 172(4) GPa, B‘ = 5.7 Experimental data Theoreticalsimulation Theoreticalsimulation • Pressure-volume dataofε-Fe3N. Nophasetransitionoccursunder high pressure. c/a ratio of the hexagonal unit-cell parameters of ε-Fe3N as a functionofpressure. Upon pressureincrease, thec/aratioincreasestowardthe ideal value (0.943 = 1.633/). R. Niewa et al. Chem. Mater.2009, 21, 392.

  4. MgO/Cr2O3 p= 15(2)GPa, T = 1600(200) K Zirconia Starting material: Fe3N1.05±3O0.017±1 Molybdenum TheoreticalanalysisrevealsthatP312 is moreenergeticallyfavoredfor Fe3N1.1. MgO Graphite Boron Nitide The compositionrefinedfromP312 is muchcolser to theexpectedcomposition. Sample Two-stage multianvildevicewith a walker-type module Refinedfomulaforε-Fe3Nx in sapcegroupP312 andP6322. Formation enthalpiesandaveragemagneticmoments on Featomsforε-Fe3N andε-Fe3N1.1. 1. ε-Fe3Nx: HPHT single-crystalgrowth

  5. 2. Phase transition from γʹ-Fe4N to ε-Fe3N0.75 0 K Endothermic ② Energy–volumediagramforthesystemε-Fe3N+Fe, γʹ-Fe4N andε-Fe4N as calculated by density-functional theory. TM Inducedbypressure! 0 K ε-Fe4N Herein, a phasetrantionfromγʹ-Fe4N to ε-Fe4N(Fe3N0.75) at 7 GPaispredictedbased on density-functionaltheory! γʹ-Fe4N Enthalpy-difference–pressurediagramfor Fe4N as calculated by density-functional theory. R. Niewa et al.,J. AlloysCompd. 2009, 480, 76.

  6. 2. Phase transition from γʹ-Fe4N to ε-Fe3N0.75 Starting material: γʹ -Fe4N0.995(5) Conditions: p = 8.5 GPa, T = 1373 K Phase transitionfromγʹ-Fe4N to ε-Fe3N0.75 underHPHT isobserved The nitrogencontentdeducedfromtheeqationsisreasonabllyagreementwithresultsby CA. ε-Fe3N0.75 γʹ-Fe4N Fe3N0.77(4) XRPD patterns of the precursor γ’-Fe4N and the product ε-Fe3N0.75 after HPHT treatments. CA: Fe3N0.760(6)O0.018(2) Latticeparametersvsnitrogencontent in Fe3Nx. K. Guo, R. Niewa, D. Rau, Y.Prots, W, Schnelle, U. Schwarz, in preparation.

  7. 2. Crystal structureofε-Fe3N0.75 Refinedfomulaforε-Fe3Nx in spacegroupP312 andP6322. CA: Fe3N0.760(6)O0.018(2) Bothdescriptionsforthecrystalstructure in spacegroupP312 andP6322looklikereasonableresults. P312 Landau theoryindicates that a change in space group within a homogeneity range is not possible! P6322 Combinedtheearlierresults, spacegroupP312 issuggested.

  8. 2. Thermal propertiesofε-Fe3N0.75 ε-Fe3N0.76 γʹ-Fe4N+ ε-Fe3Nx (x > 0.75) ε-Fe3N0.75 remains metastable up to Tonset= 516 K before transforming into thermodynamically stable γ’-Fe4N at ambient pressure.

  9. 2. Magneticpropertiesofε-Fe3N0.75 2 K: 183 emu/g = 5.83 μB ε-Fe3N0.75 FM-Fe3N0.75 γʹ-Fe4N NM-Fe3N0.75 FM-Fe4N NM-Fe4N

  10. 2. Magneticmoments in ε-Fe3N andε-Fe3N0.75 (□-FeΙ-N) (N-FeΠ-N) Density-functionaltheory!

  11. 2. Phase transition from ζ-Fe2N to ε-Fe3N1.5 ② U. Schwarz, et al., Eur. J. Inorg. Chem. 2009, 12, 1634.

  12. 2. High-pressurebehaviorsofζ-Fe2N Starting material: ζ–Fe2N0.986(6)O0.0252(8) Nophasetransitionoccursunder high pressure Bulkmodulus: B0= 172.1(8) GPa B0ʹ= 5.24(8) XRPD taken on ζ-Fe2N at different pressures in a DAC. • Enthalpy-differenceforε-Fe3N1.5 in spacegroupP312 andP6322, aswellas 2Fe+α-Ncomparedto ζ-Fe2N. Theoreticalsimulation Pressure–volumedataofζ-Fe2N. This phasetransitioncanʹtbeinducedonlybythepressure!

  13. 2. Phase transition from ζ-Fe2N to ε-Fe3N1.5 Conditions: p = 15(2) GPa, T = 1600(200) K The phasetransitionisprobablyinducedbythetemperature RefinementswithP312 leadtounreasonableresultsalthoulhitisenergeticallyfavoredbaesd on quantumtheoreticalomputations • Enthalpy-differenceforε-Fe3N1.5 in spacegroupP312 andP6322, aswellas 2Fe+α-Ncomparedto ζ-Fe2N. XRPD diagrams of ζ-Fe2N and the product of the HPHT treatment. Refinedfomulaforε-Fe3Nxin sapcegroupP6322.

  14. 3. Synthesis ofε-Fe2TMN (TM = Co, Ni) Starting material: ζ–Fe2N0.986(6)O0.0252(8) and TMpowders Conditions: p = 15(2) GPa, T = 1473(150) K Si Si Si Si Si BN TM XRPD for the starting material ζ-Fe2N, the products -Fe2CoN and -Fe2NiN. XRPD resultsrevealpure phasesforε-Fe2TMN (TM = Co, Ni)! K. Guo, R.Niewa, D. Rau, U.Burkhardt, W.Schnelle, U. Schwarz, submitted.

  15. 3. Characterizationofε-Fe2TMN (TM = Co, Ni) ε-Fe2CoN ε- Fe2NiN Typical optical micrographs of (a) -Fe2CoN and (b) -Fe2NiN. The compositions detected by EDXS and CA. Homogeneouscomposition Metal ration: Fe : Co = 1.99(6) : 1.01(6) Fe : Ni = 1.97(2) : 1.03(2)

  16. 3. Thermal propertiesofε-Fe2TMN (TM = Co, Ni) ε-Fe2CoN ε-Fe2NiN Enthalpy-differenceforε-Fe2TMN andthiercompetitivephasesundervaringpressure Based on DFT, bothε-Fe2CoNandε-Fe2NiNaremetalstable The reactions are triggered by the temperature but the pressure play an important role in the preservation of nitrogen content

  17. 3. Thermal propertiesofε-Fe2TMN (TM = Co, Ni) ε-Fe2CoN N: 6.92±0.32% ε-Fe2NiN N: 8.08±0.45% TG-DSC forε-Fe2TMN. ε-Fe2TMN decomposeabove 750 K involvingthelossofnitrogen

  18. 3. Magneticpropertiesofε-Fe2TMN (TM = Co, Ni) Fe2CoN: 4.3μB/f.u. Fe2CoN: 488(5) K Fe2NiN:3.1μB/f.u. Fe2NiN: 234(3) K Fe3N: Ms= 6μB;Tc = 575(3) K A. Leineweberet al., J. AlloysCompd., 1999, 288, 79.

  19. 3. Synthesis ofε-Fe2IrNx No experimental evidence! DRHth (kJ mol–1) γʹ -IrFe3N: high-pressurephase, stablebeyond37GPa,ferromagnetic Enthalp-pressurediagramforγʹ-IrFe3N andthiercompetingphases J. von Appen, R. Dronskowski, Angew. Chem. Int. Ed.2005, 44, 2

  20. 3. Synthesis ofε-Fe2IrNx Changingsyntheticpressure Changingsynthetictemperature

  21. 3. Synthesis ofε-Fe2IrNx Fe3N,a = 4.6982(3) Ǻ, c= 4.3789(4) Ǻ

  22. 3. Synthesis ofε-Fe2IrNx 12 Gpa, 1100 oC 12 Gpa, 1100 oC 5 Gpa, 1300 oC 0 Gpa 0 Gpa Characterizationofcompositionandphysicalpropertiesareneededtobedone.

  23. 3. Synthesis ofbulkε-Fe3(N,C) The nitrogencontent in ε-Fe3(N,C) canbetunedto a certainextent.

  24. 4. Predictionofnewpernitrides2La3+(N2)2- (N2)4- DHR = –11 kJ mol–1at absolute zeroT B0 = 86 GPa N–N = 1.30 Å M. Wessel, R. Dronskowski, J. Am. Chem. Soc. 2010, 132, 2421.

  25. 4. Predictionofnewpernitrides 2La3+(N2)2- (N2)4- 300 K Density-functional Gibbs free energy-pressure diagram for the synthesis of LaN2 in the [ThC2] type at a projected synthetic temperature of T =300 K.

  26. Conclusions • Nophasetransition but recrystallizationoccursforε-Fe3N1.05±3O0.017±1 under HPHT. • Phase transitionsfromγʹ-Fe4N and ζ-Fe2N toε-phasearestudied. • Ternarymetastablenitridesε-Fe2TMN (TM = Co, Ni) areobtainedunder HTHP. Bothε-Fe2CoN andε-Fe2NiN areferromagnetic (ε-Fe2CoN: Ms = 4.3 μB/f.u., Tc = 488(5) K; ε-Fe2NiN: Ms = 3.1 μB/f.u.Tc = 234(3) K). • ε-Fe2TMNxisobtainedbymodified HPHT treatments. • New binarypernitridesFe2+(N2)2-and2La3+(N2)2- (N2)4-arepredicted. In parallel, potential syntheticconditionsaregiven. Further works Synthesis ofε-Fe2TMNx(TM= Ir, Cr, Mn, etc.) under HTHP. Synthesis andcharacterizationofε-Fe3(N,C) asbulkmaterialsunderHTHP. …

  27. Acknowledgement Philipp Marasas andSusann Leipe: HPHT experimental support Yurii Prots and Horst Borrmann: collectionofpowderand single-crystaldiffractiondata Ulrich Burkhardt: EDX and EXAFS measurements Gudrun Auffermann and Anja Völzke: chenmicalanalysis Susann Scharsach, Stefan Hoffmann and Marcus Peter Schmidt: Thermal analysis Walter Schnelle: characterizationofmagneticproperties Ralf Riedel and Dmytro Dzivenko: measurementsofhardness Michael Hanfland: beamtimeofsynthrotronradiation Financial support from SPP 1236!

  28. Thanksforyourattention!

More Related