1 / 76

AP Chemistry Summer Assignment

AP Chemistry Summer Assignment. Measurements & Nomenclature. w = 6.87 cm. h = 0.05 cm. l = 17.9 cm. III. Significant Figures. 1. Calculate the area of the dark rectangle. 122.973. 123. 123 cm 2. 2. Calculate the volume of the object. 6.14865. 6. 6 cm 3. 10 cm. 11 cm. A. B. C.

fionan
Télécharger la présentation

AP Chemistry Summer Assignment

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. APChemistrySummer Assignment Measurements & Nomenclature

  2. w = 6.87 cm h = 0.05 cm l = 17.9 cm III. Significant Figures 1. Calculate the area of the dark rectangle. 122.973 123 123 cm2 2. Calculate the volume of the object 6.14865 6 6 cm3

  3. 10 cm 11 cm A B C D III. Significant Figures 3. Calculate the sum of the length, width, and height. 24.82 24.8 24.8 cm 4. What is the length of each segment? A = 10.07 cm B = 10.23 cm C = 10.50 cm D = 11.00 cm

  4. a. b. c. d. e. f. g. h. 9 cm 10 cm 0 cm 1 cm 9 cm 10 cm 9 cm 10 cm a. ____________ c. _____________ e. _____________ g. ____________ b. ____________ d. _____________ f. _____________ h. ____________ justified B. Introduction: When making measurements or doing calculation you should not keep more digits in a number than is ________. These rules of significant figures will show you how to determine the correct number of digits. C. What is a significant figure? Significant figures in a measurement are all values (digits) known precisely, plus ______ digit that is estimated. Example: Make the measurement with the correct significant figures. one 9.24 cm 9.00 cm 9.0 cm 0.02 cm 9.88 cm 9.70 cm 9.8 cm 0.90 cm

  5. How do you determine sig figs in a measurement that has already been recorded? • Sig Figs: The Rules 1. Every nonzero digit in a recorded measurement is significant. • Examples: 47,357 5 sig figs 25 ________ 2 • Zeros between nonzero digits are significant. • (“Sandwich rule”) • Examples: 1,007 4 sig figs • 305 _______ 3 3. Zeros in front of all nonzero digit are not significant. Examples: 0.00238 3 sig figs 0.98 ______ 0.000006 ______ 2 1

  6. Zeros at the end of a number and to the right of a decimal point are significant. Examples: 426.00 5 sig figs 2.060 ______ 0.8080 ________ 4 4 5. Zeroes at the end of a measurement where there is no decimal point are ambiguous. To clearly show the correct number of sig figs, these measurements should be written in scientific notation. Examples: 120 2-3 sig figs 3000 1-4 sig fig 1,000,000 _______ 1 - 7 Examples: Write the number 100,000 with (a) 1 sig fig, (b) 3 sig figs, (c) 5 sig figs. (a) 1 x 105 (b) 1.00 x 105 (c) 1.0000 x 105

  7. E. Practice: 1. Determine the number of significant figures for each of the following measurement. (a) 54320.0 (b) 0.004550 (c) 151309 (d) 10.54 (e) 5.20 x 105 (f) 15,000 (g) 10.04 (h) 0.0750 2. When completing calculations, it is often necessary to round the final answer to a particular number of significant figures (round up for 5 and above; keep digits the same for 4 and below). Round the above measurements to 2 significant figures. Example: 0.0753 = 0.075 107.0 = _______________ 6 4 6 4 54000 0.0046 150,000 11 5.4 x 104 4.6 x 10–3 1.5 x 105 3 2-5 4 3 10 0.075 5.2 x 105 1.5 x 104 1.0 x 101 7.5 x 10–2 = 1.1 x 102 110

  8. How many significant figures are in each of the following measurements? 24 mL 2 significant figures 4 significant figures 3001 g 0.0320 m3 3 significant figures 6.4 x 104 molecules 2 significant figures 560 kg 2-3 significant figures

  9. 3. Determine the number of sig figs for each measurement. Round the measurements to 2 sig figs. If original measurement only contains 1 or 2 sig figs, leave the second line blank. # sig figsRounded Answer 1. 0.0037 _______ ______________ 2. 134.1 _______ ______________ 3. 1,000,000 _______ ______________ 4. 5.730 x 102 _______ ______________ 5. 410.50 _______ ______________ 6. 79500 _______ ______________ 7. 3071.04 _______ ______________ 8. 4.08 x 10-6 _______ ______________ 9. 0.998 _______ ______________ 10. 1.570 _______ ______________ ------------- 2 4 1.3 x 102 1-7 1.0 x 106 5.7 x 102 4 410 5 = 4.1 x 102 80,000 = 8.0 x 104 3-5 6 3100 = 3.1 x 103 3 4.1 x 10-6 1.0 3 1.6 4

  10. # sig figsRounded Answer 4 14 3. Continued 11. 14.04 _______ ______________ 12. 5.401 _______ ______________ 13. 1340 _______ ______________ 14. 0.00566 _______ ______________ 15. 0.8120 _______ ______________ 16. 18.009 _______ ______________ 17. 100.5 _______ ______________ 18. 3008 _______ ______________ 19. 112040.0 _______ ______________ 20. 43.05 _______ ______________ 4 5.4 3-4 1300 = 1.3 x 103 5.7 x 10-3 3 4 0.81 18 5 4 = 1.0 x 102 100 3000 = 3.0 x 103 4 7 1.1 x 105 4 43

  11. 4.1 x 102 9.0 1.91 Example: 12.11 m + 8.0 m + 1.013 m = 21.123 (Rounds to ONE place after the decimal) = 21.1 m 3 cm 10025.12 mm 4. Rules for Significant Figure in CalculationsMultiplication or Division: The number of sig figs in the result is the same number as the number in the least precise (least sig figs) measurement. Example: (1) 4.56 m x 1.4 m = 6.38 m2 (Round to TWO sig figs) = 6.4 m2 (a) 17.24 x 0.52 (b) 118.24 x 3.5 (c) 8.9648 413.84 1.913034301 Addition or Subtraction: The result has the same number of decimal places as the least precise measurement used in the calculation. (1) 21 cm – 18.3 cm = (2) 10000.00 mm + 25.116 mm =

  12. 3 sig figs round to 3 sig figs 2 sig figs round to 2 sig figs Significant Figures Multiplication or Division The number of significant figures in the result is set by the original number that has the smallest number of significant figures 4.51 x 3.6666 = 16.536366 = 16.5 6.8 ÷ 112.04 = 0.0606926 = 0.061

  13. 89.332 + 1.1 one significant figure after decimal point two significant figures after decimal point 90.432 round off to 90.4 round off to 0.79 3.70 -2.9133 0.7867 Significant Figures Addition or Subtraction The answer cannot have more digits to the right of the decimal point than any of the original numbers.

  14. Scientific IV. Exponential Notation (_________ Notation) 602200000000000000000000 6.022 x 1023 A. Chemistry examples: 1. Avogadro’s Number 2. Mass of an electron 0.000000000000000000000000000000911 kg 9.11 x 10-31 kg B. Technique to change from positional notation to scientific notation: 1. Leave ___ number to the ______ of the decimal. 2. When the decimal is moved to the ______, the exponent is ____________. 3. When the decimal is moved to the ______, the exponent is ____________. 4. Number must contain the same number of ____________ as the original value. 1 left left (+) positive right (-) negative Sig figs (S.F.)

  15. C. Convert the following to scientific notation: 1.35 x 105 5.500 x 10-3 1. 135000 (3 s.f) ____________ 2. 0.005500 ____________ 3. 120,000,000,000 (2 s.f.) ____________ 4. 0.00000004441 ____________ 1.2 x 1011 4.441 x 10-8 D. Use of calculator with scientific notation: 1.61 x 10-19 Step 1: Enter the number Step 2: Press the Expontent button ____ or ____ Step 3: Enter the exponent Step 4: If negative exponent, use ____ key. 1.61 EE EXP 1.61 00 1.61 19 +/- 1.61 -19

  16. = 1.2 x 1033 = 1 x 10-27 9.29 x 106 2.26 8.75 x 1020 0.0528 E. Exponent problems (Use correct sig figs!) Raising to a power Taking a root Step 1: Enter number Step 1: Enter number Step 2: Press Step 2: Press Step 3: Enter power Step 3: Enter root Step 4: Press Step 4: Press Example: Example: xy xy 2nd = = (a) (14.5)6 = (b) (1.72 x 105)4 =

  17. The number of atoms in 12 g of carbon: 602,200,000,000,000,000,000,000 The mass of a single carbon atom in grams: 0.0000000000000000000000199 Scientific Notation 6.022 x 1023 1.99 x 10-23 N x 10n N is a number between 1 and 10 n is a positive or negative integer

  18. move decimal left move decimal right Scientific Notation 568.762 0.00000772 n > 0 n < 0 568.762 = 5.68762 x 102 0.00000772 = 7.72 x 10-6 Addition or Subtraction • Write each quantity with the same exponent n • Combine N1 and N2 • The exponent, n, remains the same 4.31 x 104 + 3.9 x 103 = 4.31 x 104 + 0.39 x 104 = 4.70 x 104

  19. Scientific Notation Multiplication (4.0 x 10-5) x (7.0 x 103) = (4.0 x 7.0) x (10-5+3) = 28 x 10-2 = 2.8 x 10-1 • Multiply N1 and N2 • Add exponents n1and n2 Division 8.5 x 104÷ 5.0 x 109 = (8.5 ÷ 5.0) x 104-9 = 1.7 x 10-5 • Divide N1 and N2 • Subtract exponents n1and n2 http://micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10/

  20. Practice 1. If the mass, radius, and height of a cylinder are given, what would be the equation to find the Density? 2. Write the correct number of sig figs for each of the following numbers. 0.0030500____ 5 35000____ 2-5 3.167 x 109____ 4 100____ 1-3 1.00006____ 6 .000008____ 1 3. Calculate each problem with the correct sig figs and units. (24 + 100.35 + 0.0035 + 1.25) x 102 g = 12,852  1.29 x 104 g __________ 9.8 x 103 __________ (0.32)(25)(1223.4) = 172.1 m __________ 406.1m – 234.034 m = 0.029 or 2.9 x 10-2 __________ (0.0035) / (0.12) = 4. Calculate the following problem with the correct sig figs and units. ____________________ 5.29 x 10-5 or 5.3 x 10-5

  21. V. Metric System 10 100 1000 A. Based on powers of 10 Ex. 1 m = ______ dm = ______ cm = ______ mm B. Uses “___________” and “____________.” prefixes Base units 1. Length meter (m) gram (g) 2. Mass liter (L) 3. Volume second (s) 4. Time Joule (J) 5. Energy

  22. C. Metric Prefixes: Memorize this table!!!! Prefix Symbol Multiplier/Factor 2. Tera T 1012 1. Peta P 1015 3. Giga G 109 4. Mega M 106 5. kilo k 103 6. hecto h 102 7. deka da 101 Base Unit m, g, L, s, J 8. deci d 10-1 9. centi c 10-2 10. milli m 10-3 11. micro µ 10-6 12. nano n 10-9 13. pico p 10-12

  23. 1 EE - 6 D. Examples: Multiplier ALWAYS goes with the _____________________. Base Unit (m, L, g, s, J) 10-6 106 1012 10-12 1 Mm = _____ m 1 µg = _____ g 1 Ts = _____ s 1 pm = _____ m E. Converting within the metric system using dimensional analysis: • Convert to base unit by canceling units (Top unit cancels with _______ unit). • Place the multiplier with the _____________________. • Place a ___ in front of the unit with ______. • To enter multiplier into the calculator, use a __ before the exponent key (NOT A 10). • Example: 10-6 bottom base unit (m, L, g, s, J) 1 prefix 1 1 x 10-6 10 x 10-6

  24. 1 L = 1 dm3 Volume – SI derived unit for volume is cubic meter (m3) 1 mL = 1 cm3

  25. L2 mL 10 –3 L 1.63 L x = 1.63 x 10-3 1 mL Dimensional Analysis Method of Solving Problems • Determine which unit conversion factor(s) are needed • Carry units through calculation • If all units cancel except for the desired unit(s), then the problem was solved correctly. How many mL are in 1.63 L? 1 mL = 10-3 L 1 mL 1.63 L x = 1.63 x 103 mL 10-3 L

  26. = 3.6 x 10-9 m = 5.56 x 10-11 Tg = 5.75 x 10-6 Mm = 5.90 x 10-16 GL = 7.85 x 1010m = 4.56 x 1012 pg F. Metric dimensional analysis examples: 3.6 x 100 nm 10-9 m 1 nm 1. Convert 3.6 nm to m. 2. Convert 55.6 g to Tg 3. Convert 575 cm to Mm. 4. Convert 0.456 dag to pg. 5. Convert 78.5 km to m 6. Convert 0.000590 mL to GL. Tg 5.56 x 101 g 1 1012 g 5.75 x 102 cm 10-2 m 1 Mm 1 cm 106 m 4.56 x 10-1 dag 101 g 1 pg 1 dag 10-12 g 7.85 x 101 km 103 m 1 m 1 km 10-6 m 5.90 x 10-4 mL 10-3 L 1 GL 1 mL 109 L

  27. 6.5 x 10-5 1 x 107 4.4 x 104 Practice

  28. Metric / English Conversion Factors (given on test): Length Mass 1 inch = 2.54 cm 1 lb. = 16 oz. = 256 drams 1 meter = 39.37 in 1 kg = 2.205 lb. 1 mile = 1.609 km 1 lb = 453.6 g 1 furlong = 220 yd. VolumeTime 1 L = 1.057 qt. 1 fortnight = 2 weeks 1 gal. = 4 qt. = 8 pt. 1 pt. = 2 cups 1 mL = 1 cm3 1 pt. = 16 fl. oz.

  29. VI. Conversion Factors: equivalent 1 1 12 A. Whenever two measurements are equal, or ___________, a ratio of these two measurements will equal __.   Example: ___ ft. = ___ in. can be written as the following ratios: B. Conversion factor: ratio of ___________ measurements. C. Write conversion factors for the following pairs of units: a. miles and feet b. days and year c. yard and feet D. Assume all conversion factors are _________ significant. (Use initial number to determine sig figs). equivalent infinitely

  30. 60 min m x x x 343 60 s 1 mi s 1 hour = 767 1 min 1609 m mi hour The speed of sound in air is about 343 m/s. What is this speed in miles per hour? meters to miles seconds to hours 1 mi = 1609 m 1 min = 60 s 1 hour = 60 min

  31. = 2.64 x 1014s = 3.69 x 1012 ng VII. Dimensional Analysis I Dimensions Units (___________) are used to solve a problem.  Examples: A. The average human brain weighs 8.13 lb. What is the mass in ng? B. How many microseconds in 8.37 years? Write answer in scientific notation. lb g ng 8.13 lb. 453.6 g 1 ng 1 lb. g 10-9 y d h min s s 8.37 y 365 d 24 h 60 min 60 s 1 s 1 y 1 d 1 h 1 min 10-6 s

  32. = 22,367 mi/h = 1.5 x 107 cm3 ft. s 32,805 ft s kL L mL cm3 15 kL 103 L 1 mL 1 cm3 1 kL 10-3 L 1 mL C. A container contains 15 kL. Convert this to cm3. D. Apollo 13 re-entered the Earth’s atmosphere at a speed of 32,805 ft/s. What was the speed in miles per hour (mph)? mi min h 60 s 60 min 1 mi 1 min 1 h 5,280 ft

  33. 235 m s = 1.26 x 104 mi/d = 591 cm3 m s x x x x x x x = 1.30 lb in ft mi min h d 60 s 60 min 24 h 39.37 in 1 ft 1 mi E. An arrow moves towards you at 235 m/s. How many miles could the arrow move in one day?(Assume the arrow never falls to the Earth). F. (a) Determine the number of cm3 in a 20.0 fl. oz. bottle of Coke. (b) What is the mass of the Coke in pounds, assuming that it is the density of water (1 g / mL)? 1 min 1 h 1 d 1 m 12 in 5,280 ft fl. oz. pt qt L mL cm3 cm3 g lb (a) 4 L 1 mL 20 fl. oz. 1 pt qt 1 1 cm3 8 1.057 qt 10-3 16 fl.oz. pt L 1 mL (b) 591 cm3 1 g 1 lb 1 cm3 453.6 g

  34. 3.00 x 108 m s = 5.88 x 1012 mi/y m m s s 100.0 m 9.86 s = 22.7 mi/h km mi min h d y 60 s 60 min 24 h 365 d 1 1 km mi G. The speed of light is 3.00 x 108 m/s. How many miles does light travel per year? H. Carl Lewis set the world record for the 100.0 m dash on August 25, 1991 in the finals of the World Track Championships with a time of 9.86 seconds. What was his average speed in miles per hour? 1 min 1 h 1 d 1 y 1.609 103 m km km mi min h 1 60 s 60 min 1 km mi 1.609 1 min 1 h 103 m km

  35. = 244.09 in3 x x x = 2.4 x 102 in3 x x x x = 5.3 x 102 in2 = 0.14 ft3 = 532.8 in2 = 532.8 in2 = 5.3 x 102 in2 VIII. Dimensional Analysis II: Square and cubic units ft in 3.7 ft2 12 in 12 in 1 ft 1 ft A. Convert 3.7 ft2 to in2. B. The engine in a Jeep Cherokee is 4.0 L. Calculate the engine volume in (a) in3, and (b) ft3. 2 3.7 ft2 12 in 1 ft L mL cm3 in in ft 3 (a) 4.0 L 1 mL 1 cm3 1 in 10-3 L 1 mL 2.54 cm 3 (b) 244.09 in3 1 ft 12 in

  36. g g mL cm3 19.3 g x x mL = 1204.8 lb/ft3 = 1.20 x 103 lb/ft3 19.3 g x x x x cm3 = 19,300 kg/m3 = 1.93 x 104 kg/m3 lb (a) cm3 in ft C. The density of gold is 19.3 g/mL. Calculate the density of gold in (a) lb/ft3, (b) kg/m3. 3 3 cm 12 in 1 lb mL 2.54 1 in 1 453.6 cm3 1 ft g 1 kg (b) m 3 cm 1 kg 1 m 103 10-2 g

  37. x = 2.85 x 103 cm = 1.21 x 107 kg = 1.21 x 1010 cm3 x d = 2.85 dam D. A spherical container with a diameter of 2.85 dam is filled with water. (a) Determine the volume of the sphere in cm3. (b) Determine the mass of the water in kilograms. d = 2.85 dam 101 m 1 cm 1 dam 10-2 m r = 1.425 x 103 cm (a) (b) 1.21 x 1010 cm3 1 g 1 kg 1 cm3 103 g

  38. = 4.1148 m x = 4.5 x 105 lb = 2.0 x 102 m3 = 203.68 m3 x x x x (a) V = l · w · d E. The dimensions of a swimming pool are 13.5 ft. x 22 m x 225 cm. (a) Determine the volume of the pool in m3. (b) Determine the mass of the water in pounds. 13.5 ft 12 in 1 m 1 ft 39.37 in V = 4.1148 m · 22 m · 2.25 m 3 1 g 1 lb (b) 1 cm 2.0368 x 102 m3 10-2 m 1 cm3 453.6 g

  39. = 39.116 cm r = 19.558 cm = 354.77 cm3 = 0.295 cm x x x x x x x x = 2.95 x 103µm d = 15.4 in d = 15.4 in 2.54 cm 1 in h = ? F. A 12.0 fl. oz. soda spilled onto the floor into a cylindrical puddle with a 15.4 inch diameter. Calculate the depth (height) of the puddle in μm. (a) fl.oz. pt qt L mL cm3 12 fl.oz. 1 pt 1 qt 1 L 1 mL 1 cm3 16 fl.oz. 2 pt 1.057 qt 10-3 L 1 mL (b) (c) 0.295 cm 10-2 m 1 µm m 1 cm 10-6

  40. = 5.56 x 10-3mm x x V = 90.0 µm3 G. The volume of a red blood cell is 90.0 µm3. What is its diameter in mm? Assume it is spherical. = 2.780 µm 2.780 µm 10-6 m 1 mm 2 x µm m 1 10-3

  41. = 279.407 cm3 x x x x x = 9.45 fl.oz. d = 5.40 cm h = 12.2 cm H. The lid of a soup can is 5.40 cm across and the can is 12.2 cm high. What is the volume of the can in fluid ounces? r = 2.70 cm V = (2.70 cm)2• 12.2 cm cm3 mL L qt pt fl.oz. 279.407 cm3 1 mL 10-3 L 1.057 qt 2 pt 16 fl.oz. 1 cm3 1 mL 1 L 1 qt 1 pt

  42. Inorganic Nomenclature

  43. Fig. 2.11 H+ Be2+

  44. I. Background: A. Periodic Table 1. Column: _______ or _______ (Similar properties) 2. Row: _______. 3. _______: Left of staircase (Majority of the elements). 4. ___________: right of staircase. Exception: _____(non-metal)(____________________) 5. ____________: touching the staircase. Exception: ___ (metal). group family period Metals Non-metals H Left of the staircase Metalloids Al

  45. Period Group 2.4

  46. Ions (Charged atoms) • 1. ________: positively charged (lost e-). • 2. ________: negatively charged(gained e-). • C. Trends in the periodic table • 1. Using the planetary model – (simplified model of atom) • 2. Energy levels can contain a maximum of: • 1st energy level: ____ • 2nd energy level: ____ • 3rd energy level: ____ (____) • 3. _________ are the keys to chemical bonds. Cations Anions 2 8 8 18 Electrons

  47. Ex. Column 1 (____________) Column 18 (___________) Alkali Metals Noble gases H (___ e-) 1 He (___ e-) 2 Ne (___e-) 10 Li (___e-) 3 Na (___e-) 11 Ar (___e-) 18 1 e- in outer shell Similarities: (________________) ______________ Full outer shell

  48. e- • Atoms can gain or lose ___ to achieve a full outer shell (more stable). • Atoms will do what is _______ (least energy) i.e. Oxygen has 6 valence e-: easier to _____ 2 than to ____ 6. easiest gain lose x Lose 1 +1 x Lose 2 +2 x Lose 3 +3 x Lose or gain 4 +/-4 Non-metals only (above staircase) x Gain 3 -3 x -2 Gain 2 x -1 Gain 1 x 0

  49. II. Binary Ionic Compounds A. Background info 1. Metal / ___________ ( _______ is always written first). 2. One element ________ and the other ________. 3. ___________ of e- 4. Charged ions attract one another (opposites attract). 5. The compound is _________ Non-metal Metal loses e- gains e- Transfer neutral

More Related