1 / 58

Erythropoietin Modeling and Simulation

Erythropoietin Modeling and Simulation. Immanuel Freedman, Ph.D., SMIEEE. O 2 sensor. A. HIF-1. . enhancer. P. EPO. apoptosis. neocytolysis. EPO. C. D. B. Self renewal. Default suicide pathway. selective hemolysis of early erythroblasts. Bone-marrow sinusoidal endothelium.

fox
Télécharger la présentation

Erythropoietin Modeling and Simulation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Erythropoietin Modeling and Simulation Immanuel Freedman, Ph.D., SMIEEE

  2. O2 sensor A HIF-1  enhancer P EPO apoptosis neocytolysis EPO C D B Self renewal Default suicide pathway selective hemolysis of early erythroblasts Bone-marrow sinusoidal endothelium Hematopoietic stem cells erythroid precursor cells BFU-e/CFU-e reticulocytes erythrocytes

  3. SC bolus  Serum concentration Ka• F Ke Cc Hemoglobin RBC Production RBC Lifespan

  4. RBC lifespan eEPO PK Response cytokines Bone Marrow Status Cancer Type Chemotherapy CL Dose efficiency Ceff Ferrokinetics? Prior Radio/Chemo Therapy

  5. Clinical Trial Simulation Dose withholding If Hgb<1 g/dL @ Week 6 Dose = 5/3*Dose If [Hgb]<14 | 15 g/dL If [Hgb]14 | 15 g/dL Dose = 0.75xDose Dose increase TEST ARM Dose = 200 g Q2W If [Hgb]<8.0 Transfusion Treatment Treat & Monitor Censor for 4 weeks Patient Dropout CONTROL ARM Dose = 3.0 g/kg Q2W Baseline Characteristics Random pt censoring ~3.1%/week cf study [Hgbo]=9.8 ± 0.6 (8-11) g/dL 74.7 ± 18.5 (27-156) kg Male 32%, Female 68% n=254/cohort x 1000

  6. Simulator Customer Groups • Corporate • Clinical • Marketing • Research

  7. Simulator Goals The simulator must be: • Accurate • Responsive • Portable • Easy to Use

  8. Amgen Clinical Data

  9. Inclusion Criteria (1 of 2) Subjects must be: • at least 18 years of age, • receiving cyclic chemotherapy, • diagnosed with non-myeloid malignancies, • diagnosed with Anemia of Cancer or Chemotherapy Induced Anemia, • anemic (Hb ≥9.0 g/dL and Hb ≤ 11.0 g/dL), except in Amgen Study 990146 (Hb ≤ 13.0 g/dL), • capable of self-care (ECOG 0 to 2), and • diagnosed with adequate renal and hepatic function.

  10. Inclusion Criteria (2 of 2) Subjects must have: • no history of seizures, cardiac or hematologic disorders that could cause anemia, • no rHuEPO treatment before study begins, • less than 2 RBC transfusions within 4 weeks before study drug, and • no RBC transfusions during current chemotherapy cycle before randomization.

  11. Population PK/PD Model Features • eight compartments, • an indirect Emax link model, • non-Gaussian residuals, • censored transfusion data, • allometric parameter scaling, • step-down covariate analysis, • validation on data not used in estimation, and • estimation with NONMEM V and MATLAB software.

  12. Population PK/PD Model Discussion • fitted Emax scales with body weight according to (BWT/70.9)-0.9±0.3

  13. Population PK/PD Simulation Features • a dose adjustment model, • a transfusion censoring model, • a patient dropout model, and • a multilognormal cohort.

  14. NESP PK/PD Model (1 of 7) $PROB TEMPLATE FOR POP PKPD MODEL FOR DARBEPOETIN ALFA ; Run 1011 based on Run 501 and Run 701 for simulation ; Run 501: PD fit Hb data from 290, 162, and 291 studies. No transfusion points. ; Run 701: PK fit Aranesp 162 SC, 146 SC and IV. $INPUT C ID TIME AMT DV HB0 CMT CHEM TYPE ROUT STUD BWT $DATA 20010102PD.csv IGNORE=C $SUBROUTINE ADVAN6 TRANS1 TOL=3 $MODEL COM=(SC) COM=(CONC) COMP=(PERI) COMP=(PR1) COMP=(LS1) COMP=(LS2) COMP=(LS3) COMP=(LS4)

  15. NESP PK/PD Model (2 of 7) $PK CL=THETA(1)*EXP(ETA(1)); Clearance from central compartment (mL/day) V2=THETA(2)*EXP(ETA(2)); Volume of distribution (mL) V3=THETA(3)*EXP(ETA(3)); Q=THETA(4)*EXP(ETA(4)); KA=THETA(5)*EXP(ETA(5)); Absorption rate constant (/day) LT1=THETA(6)*EXP(ETA(6)); F1=LT1/(1+LT1); Bioavailability of SC dose K=CL/V2; Elimination rate constant (/day) K23=Q/V2 K32=Q/V3; S2=V2

  16. NESP PK/PD Model (3 of 7) ;PD MODEL PARAMETERS RBCPT=THETA(7)*EXP(ETA(7)); Maturation time (day) RBCLS=THETA(8)*EXP(ETA(8)); Transit time (day) EMAX=THETA(9)*EXP(ETA(9)); Maximum stimulation effect EC50=THETA(10)*EXP(ETA(10)); Concentration at half maximal effect (ng/mL) KPT=1/RBCPT; Production rate constant (/day) KLS=4/RBCLS; Loss rate constant (/day) KCP=Q/V2; KPC=Q/V3; ; ALLOMETRIC SCALING CL=CL*(BWT/70.9)**0.75; V2=V2*(BWT/70.9); V3=V3*(BWT/70.9); Q=Q*(BWT/70.9); EMAX=EMAX*(BWT/70.9)**THETA(11);

  17. NESP PK/PD Model (4 of 7) $DES ; PK C2=A(2)/V2; E=EMAX*C2/(EC50+C2); ; DADT(1)= -KA*A(1); SC injection site compartment DADT(2)=KA*A(1)-(K+KCP)*A(2); Central compartment DADT(3)=KCP*A(2)-KPC*A(3); Peripheral compartment ; ; PD DADT(4)=KPT*(1+E)-KPT*A(4); Progenitor stimulation DADT(5)=KLS*(A(4)-A(5)); Erythrocyte maturation DADT(6)=KLS*(A(5)-A(6)); DADT(7)=KLS*(A(6)-A(7)); DADT(8)=KLS*(A(7)-A(8)); ;

  18. NESP PK/PD Model (5 of 7) $ERROR EFF=(A(5)+A(6)+A(7)+A(8))*HB0/4.0; W=EFF IPRED=EFF IRES=DV-IPRED IF(W.GT.0) THEN IWRES=IRES/W ELSE IWRES=0 ENDIF Y=EFF+ERR(1)

  19. NESP PK/PD Model (6 of 7) $THETA (2010 FIX); CL (3390 FIX); V2 (251 FIX); V3 (2900 FIX); Q (0.318 FIX); KA (0.795 FIX); LT1 (F1=0.443) (4.68 FIX) ; RBCPT (0, 120); RBCLS (0, 10); EMAX (0, 10); EC50 (0, 5); THETA(11) ; $OMEGA 0.296 FIX 3.22 FIX 1.29 FIX 0.483 FIX 0.004 0.216 FIX 20 0.004 0.004 0.004 ; $SIGMA 10.0

  20. NESP Covariate PK/PD Model (7 of 7) function y=resampleResiduals(residual, numberOfSamples, numberOfPatients) sizeVar=size(residual); maxIndex=sizeVar(1)-1; resplus=residual(2:end); resminus=residual(1:end-1); correlationMatrix=corrcoef(resplus, resminus); correlation=correlationMatrix(1,2); %off diagonal innovation = resplus-correlation*resminus; for subject=1:numberOfPatients y(1, subject)=0; %initial for sample=2:numberOfSamples index=1+round(abs(maxIndex*rand)); while(index==0 | index > maxIndex) index=1+round(abs(maxIndex*rand)); end %if y(sample, subject)=correlation*y(sample-1, subject)+ innovation(index); end %for sample end %for subject return

  21. NESP Covariate PK/PD Model Parameters

  22. ACF of IRES before non-Gaussian process

  23. ACF of IRES after non-Gaussian process

  24. IRES v. SEX

  25. IRES v. AGE

  26. IRES v. Chemo Cycle Count (CCNT)

  27. IRES v. Platinum-containing Chemo Cycle Count (PCNT)

  28. rHuEPO Baseline PK/PD Model Parameters *EC50 scaled from NESP EC50 using peptide mass

  29. Relative Efficacy of rHuEPO and Aranesp

  30. AMG114 First-in-Human Portal

  31. Darbepoietin Alfa Regimens

  32. Endogenous EPO

More Related