1 / 32

Density large-deviations of nonconserving driven models

Density large-deviations of nonconserving driven models. Or Cohen and David Mukamel. STATPHYS 25 Conference, SNU, Seoul, Korea, July 2013. Grand canonical ensemble out of equilibrium ?. Equilibrium. T , µ. Grand canonical ensemble out of equilibrium ?. Equilibrium. T , µ.

garin
Télécharger la présentation

Density large-deviations of nonconserving driven models

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Density large-deviations of nonconserving driven models Or Cohen and David Mukamel STATPHYS 25 Conference, SNU, Seoul, Korea, July 2013

  2. Grand canonical ensemble out of equilibrium ? Equilibrium T , µ

  3. Grand canonical ensemble out of equilibrium ? Equilibrium T , µ conserving steady state Helmholtzfree energy

  4. Grand canonical ensemble out of equilibrium ? Equilibrium T , µ conserving steady state Helmholtzfree energy q p Driven system conserving steady state

  5. Grand canonical ensemble out of equilibrium ? Equilibrium T , µ conserving steady state Helmholtzfree energy q p e-βμ 1 Driven system conserving steady state

  6. Grand canonical ensemble out of equilibrium ? Equilibrium T , µ conserving steady state Helmholtzfree energy q p e-βμ 1 Driven system conserving steady state Dynamics-dependentchemical potential of conserving system

  7. General particle-nonconserving driven model wLC wRC L sites w-NC w+NC

  8. General particle-nonconserving driven model wLC wRC L sites w-NC w+NC conserving (sum over η’ with same N) nonconserving (sum over η’ with N’≠N)

  9. General particle-nonconserving driven model wLC wRC L sites w-NC w+NC conserving (sum over η’ with same N) nonconserving (sum over η’ with N’≠N) Guess a steady state of the form :

  10. General particle-nonconserving driven model wLC wRC L sites w-NC w+NC conserving (sum over η’ with same N) nonconserving (sum over η’ with N’≠N) Guess a steady state of the form : For diffusive systems It is consistent if :

  11. Slow nonconserving dynamics To leading order in L we obtain

  12. Slow nonconserving dynamics = 1D - Random walk in a potential

  13. Slow nonconserving dynamics = 1D - Random walk in a potential

  14. Slow nonconserving dynamics w-NC w+NC

  15. Outline Limit of slow nonconserving Example of the ABC model Corrections to the rate function using MFT Conclusions

  16. ABC model B C A Ring of size L Dynamics : q AB BA 1 q BC CB 1 q CA AC 1 M R Evans, Y Kafri , H M Koduvely, D Mukamel - Phys. Rev. Lett. 80 425 (1998 )

  17. ABC model B C A Ring of size L Dynamics : q AB BA 1 q BC CB 1 q CA AC 1 ABBCACCBACABACB q=1 q<1 AAAAABBBBBCCCCC M R Evans, Y Kafri , H M Koduvely, D Mukamel - Phys. Rev. Lett. 80 425 (1998 )

  18. ABC model B C A site index time

  19. Conserving ABC model 1 2 q 1 ABBA 0X X0 X=A,B,C 1 1 q BCCB 1 fixed q CAAC 1 Conserving model (canonical ensemble) + 1 2 A B C 0 A Lederhendler, D Mukamel - Phys. Rev. Lett. 105 105602 (2010) A Lederhendler, OC, D Mukamel- J. Stat. Mech. 11 11016 (2010)

  20. Conserving ABC model Density profile Weakly asymmetric thermodynamic limit1 M Clincy, B Derrida, M R Evans - Phys. Rev. E 58 2764 (2003)

  21. Conserving ABC model Density profile Weakly asymmetric thermodynamic limit1 known2 For low β’s 2nd order M Clincy, B Derrida, M R Evans - Phys. Rev. E 58 2764 (2003) OC, D Mukamel - J. Phys. A 44 415004 (2011)

  22. Conserving ABC model Density profile Weakly asymmetric thermodynamic limit1 known2 For low β’s 2nd order Stationarymeasure3: M Clincy, B Derrida, M R Evans - Phys. Rev. E 58 2764 (2003) OC, D Mukamel - J. Phys. A 44 415004 (2011) T Bodineau, B Derrida - ComptesRendusPhysique 8 540 (2007)

  23. Nonconserving ABC model 1 2 q 1 ABBA 0X X0 X=A,B,C 1 1 q BCCB 3 pe-3βμ 1 ABC 000 q CAAC p 1 Conserving model (canonical ensemble) + 1 2 A B Nonconserving model (grand canonical ensemble) + + 1 2 3 C 0 A Lederhendler, D Mukamel - Phys. Rev. Lett. 105 105602 (2010) A Lederhendler, OC, D Mukamel- J. Stat. Mech. 11 11016 (2010)

  24. Slow nonconserving ABC model Slow nonconserving limit pe-3βμ ABC 000 p

  25. Slow nonconservingABC model Slow nonconserving limit pe-3βμ ABC 000 p saddle point approx.

  26. Slow nonconservingABC model pe-3βμ ABC 000 p

  27. Slow nonconservingABC model pe-3βμ ABC 000 p This is similar to equilibrium : f = Helmholtz free energy density

  28. Rate function of r, G(r) High µ Low µ First order phase transition (only in the nonconserving model) OC, D Mukamel - Phys. Rev. Let. 108, 060602 (2012)

  29. Inequivalence of ensembles For NA=NB≠NC : Nonconserving (Grand canonical) Conserving (Canonical) disordered disordered ordered ordered 1st order transition 2nd order transition tricritical point Stability line OC, D Mukamel - Phys. Rev. Let. 108, 060602 (2012) Different nonconserving ABC model: J Barton, J L Lebowitz, E R Speer - J. Phys. A 44 065005 (2011) Discussion about ensemble inequivalence: OC, D Mukamel - J. Stat. Mech. 12 12017 (2012)

  30. Corrections to G(r) using MFT pe-3βμ ABC 000 p - conserving current - conserving action1 - nonconserving current - nonconserving action2,3 T Bodineau, B Derrida - ComptesRendus Physique 8 540 (2007) G Jona-Lasinio, C Landimand M E Vares - Probability theory and related fields 97 339 (1993) T Bodineau, M Lagouge - J. Stat. Phys. 139 201 (2010)

  31. Corrections to G(r) using MFT pe-3βμ ABC 000 p r rμ τ 0 T Instanton path:

  32. Conclusions Nonequlibrium ‘grand canonical ensemble’ - Slow nonconserving dynamics Example to ABC model 1st order phase transition for nonmonotoneous µs(r)and inequivalence of ensembles.( µs(r) is dynamics dependent ! ) Corrections to rate function of r using MFT Thank you for listening ! Any questions ?

More Related