1 / 36

Triple photon quantum correlations Benoît Boulanger (1 ) Audrey Dot (1) , Kamel Bencheikh (2) ,

LPN. Triple photon quantum correlations Benoît Boulanger (1 ) Audrey Dot (1) , Kamel Bencheikh (2) , Ariel Levenson (2) , Patricia Segonds (1) , Corinne Félix (1) Institut Néel CNRS/UJF, Grenoble, France Laboratoire de Photonique et Nanostructures CNRS, Marcoussis, France

garland
Télécharger la présentation

Triple photon quantum correlations Benoît Boulanger (1 ) Audrey Dot (1) , Kamel Bencheikh (2) ,

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LPN • Triple photon quantum correlations • Benoît Boulanger(1) • Audrey Dot(1), Kamel Bencheikh(2), • Ariel Levenson(2), Patricia Segonds(1), Corinne Félix(1) • Institut Néel CNRS/UJF, Grenoble, France • Laboratoire de Photonique et Nanostructures CNRS, Marcoussis, France • FRISNO - Aussois • March 28 – April 1st, 2011

  2. OUT LINE LPN • Introduction & motivation • Generation of triple photons • Coherence study of triple photons • Conclusion & perspectives

  3. OUT LINE LPN • Introduction & motivation • Generation of triple photons • Coherencestudy of triple photons • Conclusion & perspectives

  4. PROBLEMATICS LPN Generation, study and manipulation of triple photons • Crystal non linear optics • Quantum optics

  5. THIRD ORDER NON LINEAR PARAMETRIC INTERACTIONS LPN Four-Wave-Mixing Stimulated Raman Scattering Kerr effect Two Photon Absorption ħ0 + ħ1 = ħ2 + ħ3 Third Harmonic Generation ħ3 = ħ + ħ + ħ Third order Parametric Fluorescence ħ1 + ħ2 + ħ3 = ħ0 Triple Photons Generation

  6. INTEREST OF GENERATING TRIPLE PHOTONS LPN • Fundamental interest in quantum optics: New state of light (GHZ Greenberger, Horne, Shimony, Zeilinger, Am. J. Phys. 1990) ; 3 photons created from the splitting of a single photon exhibit specific quantum correlations different than those of twin photons (Breitenbach, Schiller, Mlynek, Nature 1997). • Fundamental interest in non linear optics : Specific properties of triple photons generation. • Potential interest in quantum cryptography and information : possibility to use two keys instead of one (twin photons), protocole of announced pairs.

  7. WIGNER FUNCTION OF TRIPLE PHOTONS . LPN The case of a degenerate three-photon quantum state: w1=w2=w3 Banaszek, Knight, Phys. Rev. A (1997) Bencheikh, Douady, Gravier, Levenson, Boulanger, Compt. Rend. Phys. Acad. Sciences (2007)

  8. LPN ALTERNATIVE FOR TRIPLE PHOTONS GENERATION Simultaneous production of 2 pairs of photons (Pan, Daniell, Gasparoni, Weihs, Zeilinger, PRL, 2001) New tests of Bell theorem, but : • Observation by destructive selection forbids any manipulation a posteriori • Conditional protocol (small amount of events) Interest in producing prepared triple photons states : at first, a challenge in non linear optics !!!

  9. OUT LINE LPN • Introduction and motivation • Generation of triple photons • Coherencestudy of triple photons • Conclusion & perspectives

  10. SPECTRAL SPREADING OF THIRD ORDER PARAMETRIC FLUORESCENCE • Energy conservation ħ0 - ħ1 - ħ2 - ħ3 = 0 • Momentum conservation ħk0 - ħk1 - ħk2 - ħk3 = 0 2 equations and 3 quanta {ħ1, ħ2, ħ3} KTP crystal Pump : 532 nm Direction of propagation : X Continuum of solutions Fève, Boulanger, Douady, Phys. Rev. A (2002) NB : 2 equations and two quanta to fixe for twin photons.

  11. WEAK AMPLITUDE OF THE THIRD ORDER PARAMETRIC FLUORESCENCE Rate of transition Radiated power in the mode k2 Oxidecrystals10-17 W10-21 m2/V2 100 GW/cm2 1 Chalcogenide glasses 10-22 W10-18 m2/V2 1 GW/cm2 10-6 Polymers P2 Triple photons << 10-9 W of Twin photons

  12. THE IDEAL CRYSTAL FOR TRIPLE PHOTONS GENERATION … Centrosymmetric structure High damage threshold > 100 GW/cm2 High c(3) nonlinearity > 10-17 m2/V2 Phase-matchable, i.e. birefringence Dn > 10-2 10-9 W of Third order parametric fluorescence … IS NOT YET BORN!

  13. λ0-= 532 nm λ1+= 1449 nm λ2+= λ3-=1681 nm NECESSITY TO STIMULATE THE PHOTON SPLITTING LPN Choice of a double stimulation One photon detected atλ1 One generated triple {λ1, λ2, λ3} Phase-matching in KTP for the generation of triple photons around 1500 nm

  14. Intensities (W/cm²) Interaction length (a.u.) CLASSICAL THEORY OF TRIPLE PHOTONS GENERATION LPN Fève, Boulanger, Douady, Phys. Rev. A (2002) sn(u/m), cn(u/m) : Jacobi elliptic functions Energy transfer between photons populations

  15. High intensities : 100 GW/cm² sub-nanosecond pulses, focalised beams • Perfect phase-matching tunability of the source 1679 nm max = 100 µJ/pulse Nd:YAG 20 ps -10 Hz OPG 420 - 2300 nm x3 Power Meter lenses HTHR 532 nm 532 nm max = 1 mJ/impulsion Optical Delay x2 Glan-Taylor KTPx-cut25 mm Power Meter prism filters PIONEER EXPERIMENT OF TRIPLE PHOTONS GENERATION LPN

  16. LPN

  17. Phase-matching obtained at : 532 nm(o)1473.5 nm(e) + 1665.2 nm(e) + 1665.2 nm(o) Parametric signature (nm) (nm) SPECTRAL PROPERTIES LPN Generated energy at (a.u) (nm)

  18. LPN NUMBER OF GENERATED TRIPLES 3.3x1013 triple photons per pulse 1665.2(-) 1665.2(+) 1473.5(+) • Number of pump photons (532 nm) : 2.0x1015 • Number of stimulation photons (1665.2 nm) : 8.4x1014 • First experiment of triple photons generation Douady & Boulanger, Optics Letters (2004)

  19. x3 x2 ξi=ξ2+ ξ3 OPG accordable 420 – 2300 nm Home-made OPO (fixed wavelength) 1064 nm-150 ps ξ1 Possibility of resonant interactions High intensities ξ0 λ2=λ3=1665.2 nm KTP KTP KTP 1064 nm F λ/2 NEW TRIPLE PHOTONS GENERATOR LPN λ2=λ3=1665.2 nm λ0 λ1 λ1 KTP X-cut λ2=λ3 Nd:YAG 1064 nm-20 ps L λ0= 532 nm 15/39

  20. VALIDATION OF THE CLASSICAL MODEL LPN ξ0 = 4.5 mJ L = 13 mm ξi= 182 μJ L = 13 mm << ξ0= 4.5 mJ ξi= 182 μJ The calculation under the UPA gives a surestimation of a factor 500 ! Gravier & Boulanger, JOSA B (2008)

  21. OUT LINE LPN • Introduction & motivation • Generation of triple photons • Coherencestudy of triple photons • Conclusion & perspectives

  22. PROTOCOL OF CORRELATIONS STUDIES LPN Triple photons + stimulating fields Delay 2 Delay 1 Delay 3 Stimulated generation Recombinations @ 2 photons @ 3 photons Spectral analysis at Temporal analysis Sum field Sumfield Following Izo Abram et al in the case of twin photons PRL (1986)

  23. QUANTUM MODELISATION OF THE TRIPLE FIELDS LPN • Quantum calculationsQuantization of each electromagnetic field creation and destruction of a photon • Description of the photons evolution in the non linear crystal by their non linear momentum operator :

  24. QUANTUM EXPRESSION OF THE TRIPLE FIELDS LPN • Non linearmomentumevolution of the operators and for all the fields in the crystal, since: • Access to the 3 quantum field operators in each point of the crystal outgoing photons generated in each mode of the triplet sumfieldsissuedfrom the 2 and 3 fieldsrecombination

  25. NUMBER OF GENERATED PHOTONS n20 LPN w2 n2(L) n20 n30 np n1(L) w3 n3(L) n30 L z 0 w0

  26. EXPRESSION OF THE RECOMBINED FIELD LPN n20 w2 Ap n30 z L2 0 w3 • Quantified recombined field, given by the integration of its creation and annihilation operators at each frequency : L2 z 0 L1 0 z w0 • 3-photons recombined field : or • 2-photons recombined field : • Hence the spectrum of the recombined field:

  27. 3-PHOTON RECOMBINATION LPN Dl2=10 nm Dl2=10 nm Triple photons w2 w2 N2=107 Classical Background Dl1=11.5 nm w1 N0=1015 w0 Dl3=10nm Dl3=10 nm w3 N3=107 L L Outgoing photons spectra Dot, Bencheikh, Boulanger, Levenson PRA, to be published

  28. OUT LINE LPN • Introduction & motivation • Generation of triple photons • Coherencestudy of triple photons • Conclusion & perspectives

  29. CONCLUSION LPN • Theory & experiments of triple photons generationfrom a thirdorderparametricgeneration • Protocols & calculationsshowing the quantum correlations • Correspondingexperiments in progress

  30. PERSPECTIVES LPN • Spontaneous triple photons generation in opticalfiberusing modal phase-matching • ! • Aaaaaaaaaaaaaaaaaaaaaaa • Measurementof the Wigner functions • Quantum information based on triplets Third order parametric fluorescence rate from 1 W input power at 532 nm in a one-meter optical fiber !

  31. c(3) c(2) q p FROM TWIN TO TRIPLE PHOTONS Triple photons LPN Twin photons Strong impact on : -Classicalnonlinearoptics – OPO -Quantum mechanics and cryptography Aspect, Grangier, Roger, PRL (1981) An exciting story over the past 30 years! A new story for the next 30 years?

  32. 17-22 July 2011 Marriott Kauai Beach Resort Kauai, Hawaii, USA CALL FOR PAPER Nonlinear Optics (NLO) Submission deadline 15 April 2011 Including a Symposium Celebrating the 50th Anniversary of Nonlinear Optics Bloembergen, Harris, Yariv, Shen, Byer, … General chairs Daniel Gautier & Takunori Taira Program chairs Benoît Boulanger & Steven Cundiff The Optical Society of America

  33. SAME PROTOCOLE PREVIOUSLY USED FOR TWIN PHOTONS LPN ω1 ω ω0 |E|2 (a.u.) Abram et al, PRL (1986) ω2 Dayan, Phys. Rev. A (2007) 520 525 530 535 540 545 lambda (nm)

  34. Cascading rate (%) SUPPRESSION OF THE SECOND ORDER CASCADING IN KTP Douady & Boulanger, J. Opt A, 2005

  35. WIGNER FUNCTION OF TRIPLE PHOTONS . Partially non degenerate three-photon quantum state : w1≠w2=w3 Photons in the mode at w1 Photons in the mode at w2=w3 Bencheikh, Douady, Gravier, Levenson, Boulanger, Compt. Rend. Phys. Acad. Sciences (2007)

  36. RUTILE TiO2 : A PROMISING CRYSTAL FOR TRIPLE PHOTONS GENERATION THG in KTP : THG in TiO2 : Gravier & Boulanger, Optics Express (2006)

More Related