1 / 33

Time variable gravity: the general idea

Using GRACE to estimate changes in land water storage: present limitations and future potential John Wahr, Sean Swenson, Isabella Velicogna University of Colorado.

gilda
Télécharger la présentation

Time variable gravity: the general idea

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Using GRACE to estimate changes in land water storage: present limitations and future potential John Wahr, Sean Swenson, Isabella VelicognaUniversity of Colorado

  2. GRACELaunched March, 2002. A NASA/DLR mission. Managed by U Texas, JPL, and GFZ. Anticipated lifetime: 8-9 years.Objective: map out the gravity field to high accuracy every month

  3. Time variable gravity: the general idea • Use GRACE to map the Earth’s gravity field at ~monthly time intervals. These fields are provided to users. • Remove the mean, to obtain time-variations in gravity. • Use the results to solve for changes in mass at the Earth’s surface: • in the oceans, the polar ice sheets, and the water stored on land. • 40 fields ~monthly fields, between April, 2002 and Feb, 2006, are now available.

  4. A fundamental limitation of time-variable gravity: The mass results have no vertical resolution. Implications: (1) can’t distinguish between water on the surface or in the ground. (2) can’t distinguish between land water storage, and mass variability in the atmosphere or in the underlying solid Earth. The atmosphere: ECMWF meteorological fields are used to remove atmospheric contributions before constructing gravity fields. The solid Earth: post-glacial-rebound causes secular gravity signals that must be modeled and removed by the user.

  5. A mission-dependent limitation The mass results must be averaged over several hundred km or more, to be accurate.

  6. Annual Mass Cycle From GRACESmoothed using 750-km averaging radius.Cosine is max on Jan 1; Sine is max on April 1.

  7. GRACE Annual Cycle: 750 km Averaging Radius

  8. Seasonal mass signal. 400 km smoothing radius

  9. Sean Swenson has found a way to filter the Stokes coefficients to reduce noise but not signal.

  10. The error depends on smoothing radius.

  11. Examples of water storage in specific regions Besides using finding smoothed estimates of water storage, you can also find water storage in specific geographic regions (river basins, for example).

  12. Averaging kernels for the Mississippi and Amazon basins

  13. The Mass Balance Equation • Rate of water storage change = precip –evapotranspiration – runoff • dS/dt = P – ET – R Possible Applications: • P - ET = dS/dt (S from GRACE) + R (from river discharge) • R = P - ET - dS/dt

  14. Examples of estimating P - ET = dS/dt + R

  15. GRACE water storage (S) dS/dt Red: dS/dt + R Black: P-ET from ECMWF & from NCEP

  16. GRACE water storage (S) dS/dt Red: dS/dt + R Black: P-ET from ECMWF & from NCEP

  17. Examples of estimating R = P - ET - dS/dt

  18. GRACE water storage (S) dS/dt P-ET. Green: ECMWF Yellow:NCEP P-ET-dS/dt (runoff)

  19. GRACE water storage (S) dS/dt P-ET. Green: ECMWF Yellow:NCEP P-ET-dS/dt (runoff)

  20. GRACE water storage (S) dS/dt P-ET. Green: ECMWF Yellow:NCEP P-ET-dS/dt (runoff)

  21. Linear Trend between April, 2002 and Feb, 2006

  22. Secular Mass Solution.750-km Smoothing Radius. PGR Removed.

  23. Antarctic Mass Variation From GRACE __ GRACE - PGR Trend -152+/-80 km3/yr ~0.4+/-0.2 mm/yr sea level rise

  24. WAIS and EAIS Mass Variation From GRACE WAIS:-148+/-21 km3/yr EAIS:0+/-56 km3/yr

  25. Greenland Mass Variation From GRACE

  26. Greenland Mass Variation From GRACE

  27. The Future • GRACE lifetime expected to be 8-9 years. • GOCE (an ESA satellite gradiometer) will launch in 2007. Will provide excellent results at short wavelengths. Not designed to rival GRACE for time-variable studies. • NASA is considering a GRACE follow-on mission. Has the potential of obtaining mass variability down to scales of ~100 km.

More Related