1 / 36

Unit 8: Thrills & Chills

Unit 8: Thrills & Chills. Essential Questions. How are the concepts of velocity and acceleration used when designing a rollercoaster? How does an incline angle affect the speed at which an object can reach? What is spring potential energy? What is the difference between mass and weight?

gordon
Télécharger la présentation

Unit 8: Thrills & Chills

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Unit 8: Thrills & Chills

  2. Essential Questions • How are the concepts of velocity and acceleration used when designing a rollercoaster? • How does an incline angle affect the speed at which an object can reach? • What is spring potential energy? • What is the difference between mass and weight? • How does your weight change on a rollercoaster? • What are some necessary safety features on a rollercoaster? • How is conservation of energy shown in rollercoasters? • How are safety and thrills maximized when designing a rollercoaster?

  3. Chapter Challenge • You will work with a group (maximum 3 people) to design a rollercoaster • Decide who your audience is (children, thrill-seekers, squeamish adults, etc.) • Must include: 2 hills, 1 horizontal curve • Create a model and a poster of your rollercoaster • Due date: May 10

  4. Day 1: The Big Thrill • Learning Objectives: • Draw and interpret a top view and a side view of a roller coaster ride • Conclude that thrills in roller coaster rides come from accelerations and changes in accelerations • Define acceleration as a change in velocity with respect to time and recognize the units of acceleration • Be able to measure and calculate velocity and acceleration

  5. Starter

  6. Starter (cont’d) • How high was the tallest roller coaster? • Why can steel roller coasters be taller than wooden ones? • Which part of the roller coaster produces the loudest screams? Why? • Time: 15 minutes

  7. Activity 1 • In your lab groups, work through part A (#1, 2, 5) and B (#1-5) of “For you to do” (pg. 209) • Compare your drawings to other groups in part A • Show me your drawings when you finish • Time: 30 minutes

  8. Homework • Read part C & D of “For you to do” • Read Physics Talk, pg. 214 • Physics to Go, pg. 216 #1, 4, 5

  9. Day 2: What Goes Up and What Comes Down • Learning Objectives: • Measure the speed of an object at the bottom of a ramp • Recognize that the speed at the bottom of a ramp is dependent on the initial height of release of the object and independent of the angle of incline of the ramp • Complete a graph of speed vs. height of the ramp • Define and calculate kinetic and potential energy • State the conversion of energy • Relate the conservation of energy to a roller coaster ride

  10. Starter • The steepest angle of descent on a wooden roller coaster is 70° • The steepest angle of descent on a steel roller coaster is 90° • Which roller coaster will give the biggest thrill between the two? Why? • Time: 15 minutes

  11. Video

  12. Activity 1 • Activity B from last lesson • Time: 20 minutes

  13. Activity 2 • We will investigate how the angle and height of release of a marble on a track affects the speed of the marble • For you to do, pg. 219 #1 – 5, 8, 9 • Research how how a curved track would affect the speed an object can obtain • Does height matter? • Does the angle matter? • Time: 45 minutes • Due: Monday, April 22

  14. Homework • For you to read, pg. 223 • Physics to go, pg. 237 #1, 2, 3, 5, 9

  15. Day 3: More Energy • Learning Objectives: • Measure the kinetic energy of a pop-up toy • Calculate the spring potential energy from the conservation of energy and using an equation • Recognize the general nature of the conservation of energy with heat, sound, chemical, and other forms of energy

  16. Starter • The concept of a “lift hill” for a roller coaster was developed in 1885. This was the initial hill that began a roller coaster ride. A chain or a cable often pulled up the train to the top of this hill. • How does the roller coaster today get up to its highest point? • Does it cost more to lift the roller coaster if it is full of people? • Time: 15 minutes

  17. Video

  18. Activity 1 • What is kinetic energy? What is gravitational potential energy? • Draw a side view of a roller coaster, and label on the diagram where the kinetic and potential energy would be the highest and lowest • Time: 10 minutes

  19. Activity 2 • Read through “What is energy” and create a spider diagram that shows the differences between the different types of energy • Time: 15 minutes

  20. Activity 3 • Complete the “energy in a golf ball” data sheet with your group • After doing the 5 trials, calculate the speed at which the baseball hit the ground • How will you calculate this? • KE = PE (1/2mv2= mgh) • Time: 35 minutes

  21. Closing & Homework • How do you calculate the speed of an object hitting the ground if you know its PE? • For you to read, pg. 234 • Reflecting on the Activity and the Challenge, pg. 237 • Physics to go, pg. 237 #1, 2, 4, 6, 7

  22. Day 4: Your “at rest” Weight (60 min) • Learning Objectives: • Distinguish between mass and weight • Calculate weight in newtons • Measure the effect of weight on the stretch of a spring • Graph the relationship between weight and stretch of a spring • Use a spring to create a scale and explain how Newton’s Second Law is used in the creation of the scale • Calculate spring forces using Hooke’s Law

  23. Starter • A canary and an elephant have enormous differences in weight. The elephant may weigh more than 10,000 times as much as the canary • Can you use the same scale to weigh a canary and an elephant? • How does a bathroom scale work? • Time: 10 min

  24. Video

  25. Activity 1: Mass and Weight • If you were to drop a baseball and a bowling ball off the top of a building, which would land first? • Test your answer by dropping two different materials with different masses • Explain why you observed what you did (hint: think about acceleration due to gravity) • Now, drop a baseball and a piece of paper. Which hits the ground first? Why? • Time: 15 minutes

  26. Activity 1 (cont’d) • Modify the statement “all objects fall at the same acceleration” to account for your observation with the paper. • What is the difference between mass and weight? What are the units of measure for each? • Time: 15 min

  27. Activity 2: The Properties of Springs • Work through Part B of “For you to do” with your lab group • Time: 30 min Data table for #6

  28. Homework • For you to read, pg. 246 • Physics to go, pg. 251 any 3 calculation problems + #10

  29. Day 5: Weight on a Roller Coaster • Learning Objectives: • Recognize that the weight of an object remains the same when the object is at rest or moving at a constant speed • Explore the change in apparent weight as an object accelerates up or down • Analyze the forces on a mass at rest, moving with constant velocity, or accelerating by drawing the appropriate force vector diagrams • Mathematically predict the change in apparent weight as a mass accelerates up or down

  30. Starter • As the roller coaster moves down that first hill, up the second hill, and then over the top, you feel as if your weight is changing. In roller coaster terms, this is called airtime. It is the feeling of floating when your body rises up out of the seat. • Does your weight change when you are riding on a roller coaster? • If you were sitting on a bathroom scale, would the scale give us different readings at different places on the roller coaster? • Time: 15 minutes

  31. Video: Mass vs. Weight

  32. Activity 1 • Will a spring scale have the same reading with a mass suspended from it when you are moving at a constant speed? • Why do you think this? Record your answer. • Test your hypothesis by suspending a mass to the spring scale. Move your arm at a constant speed to see what happens to the reading on the scale. • Explain what you see in terms of Newton’s First and Second Laws of Motion • Draw a force diagram to show the forces that are acting on the mass • Time: 15 minutes

  33. Activity 2 • What do you think will happen to the reading on the spring scale when you accelerate the spring scale up and down? • Test your hypothesis and record your observations. You may find a diagram useful. • Complete the observation table #7 on pg. 258 • Time: 20 minutes

  34. Activity 3: Video

  35. Activity 3 • Create a comic strip that depicts the difference between mass and weight and how they change (if they change) on a roller coaster • Time: 30 minutes

  36. Homework • For you to read, pg. 259 • Physics Talk, pg. 260 • Physics to go, pg. 263 #1, 3, 4, 7

More Related