1 / 22

Developing a generic Geoscience Markup Language: GeoSciML

Developing a generic Geoscience Markup Language: GeoSciML . Tim Duffy, Marcus Sen, James Passmore British Geological Survey trd@bgs.ac.uk,mase@bgs.ac.uk,jpass@bgs.ac.uk. BGS Introduction.

guido
Télécharger la présentation

Developing a generic Geoscience Markup Language: GeoSciML

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Developing a generic Geoscience Markup Language: GeoSciML Tim Duffy, Marcus Sen, James Passmore British Geological Survey trd@bgs.ac.uk,mase@bgs.ac.uk,jpass@bgs.ac.uk

  2. BGS Introduction The British Geological Survey (BGS) has been collecting geoscience data since it was founded in 1835, and is the UK national centre for earth sciences covering all the major disciplines within geology and geophysics. It operates both in the UK and internationally . A major role of the BGS is one of data custodian, and in recent years it has put major effort into making this data more accessible both to internal and external users. A key component to this is the use of web technologies including XML for data transfer.

  3. How we handle corporate data • Corporate relational database (Oracle) • Attributed map data using CAD & GIS (Intergraph and ESRI) • Individual projects use a whole host of heterogeneous formats from Excel to custom program formats etc. • Ref: http://www.bgs.ac.uk/magazine/magazines/docs/ewise16.pdf

  4. XML experience • Specific project use e.g.: • Textbase – storing and retrieving report and other text attributed with subject metadata and linkages to corporate databases • DEAL – exchange of North Sea oil and gas well information for UK Department of Trade and Industry and oil companies • XMML consortium sponsors • http://xmml.arrc.csiro.au/

  5. XML for data exchange • File format • Using XML means file parsing can be carried out by common tools eliminating part of the work involved in data exchange • Human readability and partially self-documenting nature of XML documents makes it easier to read someone else’s data and makes it a good candidate for archival use • Data model • Common tools (e.g. DTDs, XML Schema) can ensure data conforms at least partially to a particular data model • Still can’t exchange data between incompatible models but common tools (e.g. XSLT) exist to make translation process easier if a mapping or partial mapping between models exists • But having a standard intermediate model or library of model pieces would reduce the number of translations that need to be coded

  6. GML • Geography Mark-up Language (GML) is an OpenGIS Consortium (OGC) standard using W3C XML Schema • Create your own application schema using components from GML • eXploration and Mining Mark-up Language (XMML) is a GML application with a focussed geoscience scope • GeoSciML is also being developed as a GML application with a wider generic geoscience scope that imports and builds on XMML and GML

  7. GML components • Features • Geometry • Coordinate reference systems • Topology • Temporal information • Definitions and dictionaries • Units, measures, values and directions • Observations (also separate Observations & Measurements standard) • Coverages • Styling

  8. Feature model • Developed by ISO TC/211 (ISO 19109) • Most suitable for discrete objects in space • Compare traditional CAD & GIS “geometry-first” approach

  9. A GeoSciML Schema <schema targetNamespace="http://www.opengis.net/GeoSciML" xmlns="http://www.w3.org/2001/XMLSchema" xmlns:gsml="http://www.opengis.net/GeoSciML" xmlns:xmml="http://www.opengis.net/xmml" xmlns:gml="http://www.opengis.net/gml" elementFormDefault="qualified" attributeFormDefault="unqualified"> ... <import namespace="http://www.opengis.net/xmml" schemaLocation="../XMML/feature.xsd"/> <!-- ======================== --> <element name="GeologyExtent" type="gsml:GeologyExtentType" substitutionGroup="gml:_Feature"> ... </element> <complexType name="GeologyExtentType"> <complexContent> <extension base="xmml:FeatureType"> <sequence> <element name="mappedUnit" type="gml:CodeType"/> <element name="mappedMaterial" type="gml:CodeType"/> <element name="surfaceOfCrop" type="gml:CodeType"/> </sequence> </extension> </complexContent> </complexType>...

  10. GeoSciML Development Approach • Select a few trial geoscience subject areas • Boreholes • Structural geology • Text • Dictionaries • Geochemistry, geophysics, geotechnical... • Use existing software to generate prototype GeoSciML instances from existing data (N.B. currently we don’t have software aware of XML Schema type hierarchies and substitution groups.) • XSLT, Oracle XSQL, ArcIMS OGC WFS servlet

  11. Boreholes • We (unsurprisingly) have quite a few borehole related data from simple index information on (almost) all boreholes drilled in the UK to geological log, water level, geochemical etc. data from boreholes • Currently delivered by a variety of front-ends: web-forms leading to HTML tables, graphical views (illustrated), Internet GIS (ArcIMS based)...

  12. Boreholes Instance <gml:FeatureCollection gml:id="TestBhDump" xmlns:xmml="http://www.opengis.net/xmml" xmlns:gsml="http://www.opengis.net/GeoSciML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:gml="http://www.opengis.net/gml"> <gml:boundedBy><gml:Null>missing</gml:Null></gml:boundedBy> <gml:featureMembers> <xmml:Borehole gml:id="NS88SE_SE_6792_3_2"> <gml:metaDataProperty> <xmml:AccessRestrictions><xmml:text>None</xmml:text></xmml:AccessRestrictions> </gml:metaDataProperty> <gml:name codeSpace="http://ns.bgs.ac.uk/bgs.sobi.pk">NS88SE/SE/6792/ 3/2</gml:name> <gml:name codeSpace="http://ns.bgs.ac.uk/bgs.sobi.bore_name">FALKIRK,BANKSIDE IND ESTATE.</gml:name> <xmml:collarLocation> <gml:Point srsName="epsg:7405"> <gml:pos>289495 0681545 7.94</gml:pos> </gml:Point> </xmml:collarLocation> <xmml:comment>SEE ALSO SE 6793.</xmml:comment> <xmml:length uom="#m">6</xmml:length> </xmml:Borehole>...

  13. Text • BGS has developed an in-house application (Textbase) to retrieve report fragments and other text based on subject meta-data and what features it describes • OGC trialled an application called Location Organizer Folders (http://www.opengis.org/docs/01-037.pdf) to bring together assorted media types in a GML framework

  14. Text Instance <gml:FeatureCollection xmlns:gsml="http://www.opengis.net/GeoSciML" xmlns:tb="http://ns.bgs.ac.uk/Textbase" xmlns:gml="http://www.opengis.net/gml" xmlns:xlink="http://www.w3.org/1999/xlink"> <gml:featureMember> <gsml:NarrativeText gml:id="TR.GP.33"> <gsml:subject gml:codeSpace="http://ns.bgs.ac.uk/Textbase/scheme/AMF">1957</gsml:subject> <gsml:subject gml:codeSpace="http://ns.bgs.ac.uk/Textbase/scheme/AMF">3601</gsml:subject> <gsml:subject gml:codeSpace="http://ns.bgs.ac.uk/Textbase/scheme/LEXICON">LI</gsml:subject> <gsml:subject gml:codeSpace="http://ns.bgs.ac.uk/Textbase/scheme/LEXICON">MMG</gsml:subject> <gsml:subject gml:codeSpace="http://ns.bgs.ac.uk/Textbase/scheme/LEXICON">SSG</gsml:subject> <gsml:relatedFeature xlink:href="http://www.bgs.ac.uk/wfs/boreholes/TQ436BJ"/> <gsml:rootElement><tb:para/></gsml:rootElement> <gsml:textContent> <gsml:TextFragment><tb:parainfo/> Structure contour maps of the top surface of the Sherwood Sandstone Group, Mercia Mudstone Group and the Lias (Figures <tb:link linkend="gpf007" type="figref">7c-e)</tb:link> show gentle (1 to 2°) easterly dipping surfaces ‘rippled’ by numerous open folds, commonly associated with minor, dominantly normal faults, orientated north-east or north-west, with displacements typically less than 20 m. </gsml:TextFragment> </gsml:textContent> </gsml:NarrativeText>...

  15. Structural Geology • We are starting with the model (GSD2) currently being implemented for BGS’ field mapping data

  16. Structural Geology Instance <Features xmlns="http://www.esri.com/WFS" xmlns:gml="http://www.opengis.net/gml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.esri.com/WFS BedrockGeology.xsd"> <gml:boundedBy><gml:Box> <gml:coord><gml:X>443554.612</gml:X><gml:Y>1179784.018</gml:Y></gml:coord> <gml:coord><gml:X>466908.386</gml:X><gml:Y>1217077.305</gml:Y></gml:coord> </gml:Box></gml:boundedBy> <gml:featureMember> <gsml:BedrockUnitExtent xmlns:esriwfs="http://www.esri.com/WFS" xmlns:gsml="http://www.opengis.net/GeoSciML" xmlns:wfs="http://www.opengis.net/wfs" xmlns:ogc="http://www.opengis.net/ogc"> <gsml:mappedUnit gml:codeSpace="http://ns.bgs.ac.uk/uris/Lexicon">NMMUS</gsml:mappedUnit> <gsml:mappedMaterial gml:codeSpace="http://ns.bgs.ac.uk/RCS">SCHH</gsml:mappedMaterial> <gml:location> <gml:MultiPolygon srsName="http://www.opengis.net/gml/srs/espg.xml#"><gml:polygonMember> <gml:Polygon><gml:outerBoundaryIs> <gml:LinearRing><gml:coordinates decimal="." cs="," ts="">455313.386,1195067.109 455314.533,1195067.697 455316.358,1195064.138 455313.386,1195067.109</gml:coordinates></gml:LinearRing> </gml:outerBoundaryIs></gml:Polygon> </gml:polygonMember></gml:MultiPolygon> </gml:location> </gsml:BedrockUnitExtent> </gml:featureMember>...

  17. Dictionaries • Currently just simple definition lists or hierarchical structure but not complex relationships between defined terms (thesaurus)

  18. Dictionaries Instance <gml:DefinitionCollection gml:id="BGSRCSSubset-XFDAE-ADFEE" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:gml="http://www.opengis.net/gml"> <gml:description>A subset of entries from the BGS Rock Classification Scheme</gml:description> <gml:name>BGS Rock Classification Scheme</gml:name> <gml:definitionMember> <gml:DefinitionCollection gml:id="CLAY"> <gml:description>CLAY (UNDIFFERENTIATED)</gml:description> <gml:name codeSpace="http://ns.bgs.ac.uk/bgs.rock_namev3.code">CLAY</gml:name> <gml:definitionMember> <gml:DefinitionCollection gml:id="CLYGV"> <gml:description>CLAY, GRAVELLY</gml:description> <gml:name codeSpace="http://ns.bgs.ac.uk/bgs.rock_namev3.code">CLYGV</gml:name> </gml:DefinitionCollection>...

  19. Other areas • We are also interested in geochemical, geophysical and geotechnical data. There is currently active development by XMML project of geochemical and geophysical schemas which look likely to cover all our needs. • Geotechnical data may be based on UK body Association of Geotechnical and Geoenvironmental Specialists (AGS) developing XML format but needs work

  20. Exchange process <wfs:GetFeature service="WFS" version="1.0.0" xmlns:wfs="http://www.opengis.net/wfs" xmlns:ogc="http://www.opengis.net/ogc" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/wfs ../wfs/1.0.0/WFS-basic.xsd" maxFeatures="22"> <wfs:Query typeName="GeologyExtent"> <ogc:Filter> <ogc:BBOX> <ogc:PropertyName>gml:location</ogc:PropertyName> <gml:Box> <gml:Coordinates>320000,179000 520000,345000</gml:Coordinates> </gml:Box> </ogc:BBOX> </ogc:Filter> </wfs:Query> </wfs:GetFeature>

  21. Conclusions • Designing and understanding a comprehensive geoscience data exchange model is difficult • Need to drive from use-cases and prototype exchange formats for geoscientists to try out with their particular use-cases • We propose that a similar development process be extended to the wider geoscience community, with the support of bodies such as the International Union of Geological Sciences' (IUGS) Commission for the Management and Application of Geoscience Information and the OGC, so that GeoSciML can become a common language for generic geoscience information exchange using XML based web processes.

More Related