1 / 50

COMPE 467 - Pattern Recognition

Bayesian Decision Theory. COMPE 467 - Pattern Recognition. Covariance matrices for all of the classes are identical, But covariance matrices are arbitrary. and are independent of i. So,. Covariance matrices are different for each category.

Télécharger la présentation

COMPE 467 - Pattern Recognition

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bayesian Decision Theory COMPE 467 - Pattern Recognition

  2. Covariance matrices for all of the classes are identical, • But covariance matrices are arbitrary.

  3. and are independent of i. So,

  4. Covariance matrices are different for each category.

  5. only is independent of i. So,

  6. EXAMPLE:

  7. EXAMPLE (cont.):

  8. EXAMPLE (cont.): Find the discriminant function for the first class.

  9. EXAMPLE (cont.): Find the discriminant function for the first class.

  10. EXAMPLE (cont.): Similarly, find the discriminant function for the second class.

  11. EXAMPLE (cont.): The decision boundary:

  12. EXAMPLE (cont.): The decision boundary:

  13. EXAMPLE (cont.): Using MATLAB we can draw the decision boundary: (to draw the decision boundary in MATLAB) >> s = 'x^2-10*x-4*x*y+8*y-1+2*log(2)'; >> ezplot(s)

  14. EXAMPLE (cont.): Using MATLAB we can draw the decision boundary:

  15. EXAMPLE (cont.):

  16. Error Probabilities and Integrals

  17. Error Probabilities and Integrals

  18. Error Probabilities and Integrals

  19. Receiver Operating Characteristics • Another measure of distance between two Gaussian distributions. • found a great use in medicine, radar detection and other fields.

  20. Receiver Operating Characteristics

  21. Receiver Operating Characteristics

  22. Receiver Operating Characteristics

  23. Receiver Operating Characteristics • If both diagnosis and test are positive,it is called a true positive. The probability of a TP to occur is estimated by counting thetrue positives in the sample and divide by the sample size. • If the diagnosis is positive andthe test is negative it is called a false negative (FN). • False positive (FP) and true negative(TN) are defined similarly.

  24. Receiver Operating Characteristics • The values described are used to calculate different measurements of the quality of thetest. • The first one is sensitivity, SE, which is the probability of having a positive test among the patients who have a positive diagnosis.

  25. Receiver Operating Characteristics • Specificity, SP, is the probability of having a negative test among the patients who have anegative diagnosis.

  26. Receiver Operating Characteristics • Example:

  27. Receiver Operating Characteristics • Example (cont.):

  28. Receiver Operating Characteristics • Overlap in distributions:

  29. Bayes Decision Theory – Discrete Features • Assume x = (x1.......xd) takes only m discrete values • Components of x are binary or integer valued, x can take only one of m discrete values v1, v2, …, vm

  30. Bayes Decision Theory – Discrete Features (Decision Strategy) • Maximize class posterior using bayes decision rule P(1 | x) = P(x | j) . P (j) S P(x | j) . P (j) Decide i if P(i | x) > P(i | x)for all i ≠ j or • Minimize the overall risk by selecting the action i = *: deciding 2 * = arg min R(i | x)

  31. Bayes Decision Theory – Discrete Features (Independent binary features in 2-category problem)

  32. Bayes Decision Theory – Discrete Features (Independent binary features in 2-category problem)

  33. Bayes Decision Theory – Discrete Features (Independent binary features in 2-category problem)

  34. Bayes Decision Theory – Discrete Features (Independent binary features in 2-category problem)

  35. Bayes Decision Theory – Discrete Features (Independent binary features in 2-category problem)

  36. Bayes Decision Theory – Discrete Features (Independent binary features in 2-category problem)

  37. Bayes Decision Theory – Discrete Features (Independent binary features in 2-category problem) EXAMPLE

  38. Bayes Decision Theory – Discrete Features (Independent binary features in 2-category problem) EXAMPLE

  39. Bayes Decision Theory – Discrete Features (Independent binary features in 2-category problem) EXAMPLE

  40. Bayes Decision Theory – Discrete Features (Independent binary features in 2-category problem) EXAMPLE

  41. Bayes Decision Theory – Discrete Features (Independent binary features in 2-category problem) EXAMPLE

  42. APPLICATION EXAMPLE Bit – matrix for machine – printed characters a pixel Here, each pixel may be taken as a feature For above problem, we have is the probabilty that for letter A,B,… B A

  43. Summary • To minimize the overall risk, choose the action thatminimizes the conditional risk R (α |x). • To minimize the probability of error, choose the class thatmaximizes the posterior probability P (wj |x). • If there are different penalties for misclassifying patternsfrom different classes, the posteriors must be weightedaccording to such penalties before taking action. • Do not forget that these decisions are the optimal onesunder the assumption that the “true” values of theprobabilities are known.

  44. References • R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, New York: John Wiley, 2001. • Selim Aksoy, Pattern Recognition Course Materials, 2011. • M. Narasimha Murty, V. Susheela Devi, Pattern Recognition an Algorithmic Approach, Springer, 2011. • “Bayes Decision Rule Discrete Features”, http://www.cim.mcgill.ca/~friggi/bayes/decision/binaryfeatures.html, access: 2011.

More Related