1 / 54

УСКОРИТЕЛИ В ФИЗИКЕ ВЫСОКИХ ЭНЕРГИЙ И.Н.Мешков VI-я Зимняя школа по Теоретической Физике

УСКОРИТЕЛИ В ФИЗИКЕ ВЫСОКИХ ЭНЕРГИЙ И.Н.Мешков VI-я Зимняя школа по Теоретической Физике "Введение в Теорию Фундаментальных Взаимодействий" Дубна, 26 января – 5 февраля 2008 г. Лекция III. 26 January – 5 February 2008 I.Meshkov Particle Acelerators in HEP

halil
Télécharger la présentation

УСКОРИТЕЛИ В ФИЗИКЕ ВЫСОКИХ ЭНЕРГИЙ И.Н.Мешков VI-я Зимняя школа по Теоретической Физике

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. УСКОРИТЕЛИ В ФИЗИКЕ ВЫСОКИХ ЭНЕРГИЙ И.Н.Мешков VI-я Зимняя школа по Теоретической Физике "Введение в Теорию Фундаментальных Взаимодействий" Дубна, 26 января – 5 февраля 2008 г. Лекция III

  2. 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna Содержание 12. Физика спина 13. “Confinement” и “comressed barion matter” 14. Масса нейтрино 15. Перспективы развития ускорительной техники и “Новая физика” 16. И ещё раз о космических лучах Заключение

  3. SPS, Main Injector (Fermilab), J-PARC LHC, ILC, muon collider, “plasma wake field accelerators” 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna 10. The remaining problems and accelerators

  4. The HERA facility will be shut down this year (?) 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna 12. Spin Physics Hadron-Electron Ring Accumulator (HERA) Parameters: Circumference6336 m Energy30 GeV (e+or e-) x 820(p) GeV Luminosity3.8×1031 cm-2×s-1 HERA: The first "hint" on quark-gluon structure of nucleon spin

  5. 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna 12. Spin Physics ContinuousElectron BeamAcceleratorFacility (Jefferson National Laboratory) Electrons of 12 GeV energy are used as an electromagnetic/weak interacting probe of nucleon structure Fixed target experiment

  6. 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna 12. Spin Physics Nuclotron (JINR) d 4 (6 - project) GeV/amu

  7. 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna 12. Spin Physics Cooler-Synchrotron (COSY) Forschungszentrum Juelich, Germany d 2 GeV/amu electron cooling stochastic cooling

  8. 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna 12. Spin Physics U70 (Protvino) p, d 35 GeV/amu (concept)

  9. 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna 12. Spin Physics Relativistic Heavy Ion Collider(BNL) pp 2x250 GeV, 1×1032 cm-2×s-1 pp­­ 2x250 GeV, 1×1032 cm-2×s-1 ? ii 2x100 GeV/u, 3.2×1027 cm-2×s-1

  10. 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna 13. “Confinement” & “compressed barion matter” Experiment NA-49 208Pb82+ 158 GeV/u 208Pb fixed target Search for quark-gluon plasma

  11. 13. “Confinement” & “compressed barion matter” 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna RHIC in Ion Mode 197Au79+ x 197Au97+ 100 GeV/u  s = 202 GeV/u Lpeak = 3.21027 cm-2s-1 _ Electron cooling  91027 cm-2s-1

  12. 13. “Confinement” & “compressed barion matter” 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna Novel Ideas from Dubna A.Sisakian, A.Sorin, V.Toneev: Search for The Mixed Phase

  13. 13. “Confinement” & “compressed barion matter” 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna Evolution of collision region in Nucleus-Nucleus Interaction Hadronisation, hadronic phase & chemical freeze-out QGP and hydrodynamic expansion Hadronic phase & kinetic freeze-out Start of the collision pre-equilibrium “Chemical freeze-out” – finish of inelastic interactions; “Kinetic freeze-out” – finish of elastic interactions. _______________________________________________________ *) freeze-out – here means “to get rid” (отделаться, англ. слэнг)

  14. 13. “Confinement” & “compressed barion matter” The Mixed Phase can be formed in collisions of heavy and neutron rich ions at s ~ 7  10 GeV/u. _ 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna Novel Ideas from Dubna: The project of ion collider in this energy range

  15. 13. “Confinement” & “compressed barion matter” Booster Krion & Linac Nuclotron Collider C = 251.2 m The second possible detector _ s ~ 4  10 GeV/u 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna Project of Nuclotron-based Ion Collider fAcility Existing beam lines (solid target exp-s) Averaged luminosity 1.31027 cm-2s-1 (238U92+ x 238U92+)

  16. 13. “Confinement” & “compressed barion matter” What do think others? Reacted immediately! 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna

  17. 13. “Confinement” & “compressed barion matter” What is the FAIR? 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna RHIC – reflecting of collision energy decreasy U-70 – considering ion acceleration CERN… too busy with LHC, but… FAIR…

  18. 13. “Confinement” & “compressed barion matter” Facility for Antiproton and Ion Research GSI (Darmstadt, Germany) _ E[GeV/u] 0.3· (Z/A)·(B)[T·m] SIS100, SIS300 – superconducting proton (ion) synchrotrons CR – Cooler storage Ring RESR – cooler storage ring NESR – “New ESR” HESR – High Energy Storage Ring FLAIR - Facility for Low-energy Antiproton and Ion Research 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna

  19. 13. “Confinement” & “compressed barion matter” Facility for Antiproton and Ion Research Compressed Barion Matter experiment at FAIR Fixed target experiment complimentary to NICA/MPD 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna

  20. 13. “Confinement” & “compressed barion matter” TerraWatt Accumulator Facility at ITEP (Moscow) Fixed target experiment complimentary to FAIR and NICA/MPD 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna

  21. 13. “Confinement” & “compressed barion matter” UK Booster U10 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna TerraWatt Accumulator Facility at ITEP (Moscow) Two-ring accelerator complex: The goal => accumulation of 1× 1012 C6+ ions The ion beam energy 3.8 kJ/pulse Beam pulse duration 50 ns Beam power 77 GW Acceleration up to 700 MeV gives 270 GW The goal: inertial fusion

  22. 14. Neutrino Mass 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna Is neutrino massless particle? If not Bruno Pontecorovo: neutrino oscillations First evidence: cosmic neutrinos from Supernova SN First experimental observation: 1998, The Super-Kamiokande Collaboration The detector, named KamiokaNDE for Kamioka Nucleon Decay Experiment, was a tank 16.0m in height and 15.6m in width, containing 3,000 tons of pure water and about 1,000 photomultiplier tubes (PMTs). Super-Kamiokande: 15 timeslarger the water volume and 10 times as many PMTs as Kamiokande.

  23. 14. Neutrino Mass (Contnd) CERN Accelerator Chain 25 July – 5 August2005 The VIIIth International School-Seminar at "Golden Sands“, Gomel

  24. 14. Neutrino Mass (Contnd) SPS(CERN) CNGS1 (OPERA) A search for nm -nt oscillations in the CNGS beam; CNGS2 (ICARUS) A search of n-oscillations with the ICARUS detector CNGS: CERN Neutrino to Grand Sasso 730 km CNGS 730 km 25 July – 5 August2005 The VIIIth International School-Seminar at "Golden Sands“, Gomel

  25. 14. Neutrino Mass (Contnd) Main Injector Neutrino Oscillation Search(MINOS) 25 July – 5 August2005 The VIIIth International School-Seminar at "Golden Sands“, Gomel

  26. 14. Neutrino Mass (Contnd) J-PARC Tokyo 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna K2K and J-PARC K-to-K: KEK to Kamiokande K2K - Long-baseline Neutrino Oscillation Experiment J-PARC: Japaneze Proton AcceleRator Complex Linac: H- , 600 (400) MeV RCS 3 GeV proton synchrotron, 25 Hz repetition rate MR (Main Ring) 50 Gev, <Ip> = 15 mA Þ 0.93×1013 p/s, <Pbeam> = 750 kW, repetition rate 0.3 Hz

  27. 14. Neutrino Mass 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna Accelerators and neutrino oscillations Neutrino Generators SPS (CERN)450 GeV, 2×1012 p/s Main Injector (Fermilab) 120 GeV, 1.3×1013 p/s J-PARC (Japan)50 Gev, 9.3×1012 p/s U-70 (Russia)70 GeV, 1.5×1012 p/s and 3 experiments: OPERA (CERN) 730 km MINOS (Fermilab) 730 km K2K (KEK, Japan) ~ 300 km

  28. 15. Prospects of Accelerator Technologies and New Physics 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna • International (e+ e-) Linear Collider • (ILC - “TESLA technology”) • 2. CERN(e+ e-) Linear Collider • (CLIC–"CLIC technology”) • 3. Muon Collider • 4.Plasma & Wake-field accelerators

  29. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna First idea – VLEPP: Встречные Линейные Электрон-Позитронные Пучки i.e. e+ e-Linear Collider V.E.Balakin, G.I.Budker, A.N.Skrinsky INP Novosibirsk 1978

  30. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) Why should they be linear? To avoid SR problem! 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna First idea

  31. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna First proposal Layout of the VLEPP facility (1974-1977)

  32. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) ILC Scheme 2х250 GeV, 15 + 15 km ~30 km ML ~10km (G = 31.5MV/m) 20mr RTML ~1.6km 2mr BDS 5km e+ undulator @ 150 GeV (~1.2km) x2 R = 955m E = 5 GeV 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna

  33. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) 2 x 250 GeV 15 x 15 km “TESLA Technology” 35 MV/m £ 60 MeV / m ILC Tunnel 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna ILC

  34. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) InternationalLinear Collider (ILC) – A Fabric of Higgs Bosons Main advantage of a e+e- collider LHC ppcollisions: H H e- e+ Z0 Z0 ILC e+e-collisions: 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna

  35. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna ILC LHC will allow to find Higgs-boson and "roughly" defind its mass ILC will make possible high precision measurements of Higgs-boson parameters

  36. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) Energy Polarization Luminosity 2x250  2x500 GeV 500 fb-1/4 years 21034 cm-2s-1 P  0.8 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna InternationalLinear Collider (ILC) – A Fabric of Higgs Bosons ILC «Three elefants of» ILC

  37. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) Executive Committee for Baseline Configuration • GDE Director B.Barish (SLAC) • Regional Directors G. Dugan – Americas (Cornell Univ.) B. Foster – Europe (Oxford Univ.,RAL) Takasaki – Asia(KEK) • Accelerator Leaders Raubenheimer – Americas (?) N. Walker – Europe (?) K. Yokoya – Asia (KEK) GDE Executive Committee G.Shirkov (JINR) 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna ILC Global Design Effort – - Всемирное Усилие по Созданию Проекта GDE Structure and Organization

  38. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) Почём хиггсы для народа? ILC ILC = $ 6.5  6.7 Billion (15?) 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna

  39. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) 4.DESY 5.Dubna 3. CERN 1. Fermilab 2. Japan 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna ILC Where to buildILC?

  40. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) ILC at Dubna ILC Cosmic Communication Station 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna

  41. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) ILC The GDE Plan and Schedule 2007 2008 2005 2006 2009 2010 Global Design Effort Project Baseline configuration Reference Design Funding Technical Design regionial coord-n globally coordinated ILC R&D Program expression of interest Hosting samples FALC International Mgmt ICFA / ILCSC 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna

  42. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) SSC, ILC,… what follows? 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna ILC Recent disappointment: USA, GB shortened funding of the Project works!

  43. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) CERN (e+e-) LInear Collider CLIC – Alternative Technology: “Two beam acceleration” Status: R & D 150 MV/m The Decision “After LHC” (i.e. 2007) 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna Now - 2009 !

  44. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) + - 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna Proton Injector ~100 GeV Muon Collider targets decay channels Principle limitation – ultrarelativistic energy : life = ,   2.2 s,   100 Ionization cooling and -bunches formation accelerator Status: R & D + -collider

  45. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna Muon Collider Key technology: “muon cooling” Initial idea  A.A.Kolomensky (1968): G.Budker & A.Skrinsky ( beginning of the 70th)  muon cooling and +-collider concept Test facility under construction: Muon Ionization Cooling Experiment MICE at Rutherford Appleton Lab., UK

  46. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) no cooling d/dx Regions of ionization cooling /mc2 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna 0.01 0.1 1.0 10 100 Muon Collider “muon cooling” Good, but… …does not work for hadrons due to strong interaction with nuclei!

  47. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) Driver bunch “Witness bunch” 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna Plasma & Wake-field accelerators Status: R & D Acceleration rate ~ a few GeV/m Principle of “The Wake Field Acceleration”

  48. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) Rough estimate: Phase velocity of the plasma wave coincides with the driver bunch velocity. Plasma oscillation - + - - + - - + - - + - - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - E ~ /2 Plasma & Wake-field accelerators The principle: A short ultrarelativistic electron bunch (or a few bunches), or short laser pulse passes through plasma and excites with its electric field plasma oscillations. Heavy ions remain to stay at their initial places, but light electrons begin to oscillate around equilibrium position. Separation of plasma charges produces electric field, which can accelerate particle coming into oscillating plasma at appropriate phase. That is Plasma Wakefield Acceleration (PWFA) Typical parameters: Plasma density np~ 1015 cm-3 Plasma frequency p = (4npe2/m)1/2 ~ 2·1012 s-1 Bunch size Lb ~ p/4 ~ c/p ~ 0.2 mm Electric field E (4npmc2)1/2 = pmc/e ~ 3 GV/m ! 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna

  49. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna Plasma & Wake-field accelerators That is Plasma Wakefield Acceleration (PWFA) Typical parameters: Plasma density np~ 1015 cm-3 Plasma frequency p = (4npe2/m)1/2 ~ 2·1012 s-1 Bunch size Lb ~ p/4 ~ c/p ~ 0.2 mm Electric field E (4npmc2)1/2 = pmc/e ~ 3 GV/m !

  50. 15. Prospects of Accelerator Technologies andNew Physics (Contnd) Plasma & Wake-field accelerators List of Experiments on Wake Field Acceleration Laboratory Year Bunch Particle Energy Acceleration number energy gain rate MeV MeV MeV/m Argonne Nat. Lab. 1988-90 2 15 - 21 200 5 1998-… 1-2 15.6 11 140 KEK 1990-93 6 250-500 30 Kharkov Inst. for Physics and Technique 1991-94 6000 2 0.5 0.25 SLAC 2000-... 30 GeV 4 GeV 40 GeV/m BNL 2003-… 1 60 0.6 35 LANL 2001-.., 5 7.4 MeV 7.5 0.2 in gas jet 26 January – 5 February2008 I.MeshkovParticle Acelerators in HEP The VIth Winter Schoolof Theoretical Physics, JINR, Dubna

More Related