1 / 21

C. Radier 1,2 , F. Giambruno 1,3 , C. Simon-Boisson 2 , V. Moro 2 , G. Chériaux 1

Palaiseau - FRANCE. Spatio-Temporal Chirped Pulse Amplification for Avoiding Spectral Modifications in Ultra-Short Petawatt Lasers. C. Radier 1,2 , F. Giambruno 1,3 , C. Simon-Boisson 2 , V. Moro 2 , G. Chériaux 1. 1 LOA, Chemin de la Hunière, 91761 Palaiseau Cedex, France

hamlet
Télécharger la présentation

C. Radier 1,2 , F. Giambruno 1,3 , C. Simon-Boisson 2 , V. Moro 2 , G. Chériaux 1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Palaiseau - FRANCE Spatio-Temporal Chirped Pulse Amplification for Avoiding Spectral Modifications in Ultra-Short Petawatt Lasers C. Radier1,2, F. Giambruno1,3, C. Simon-Boisson2, V. Moro2, G. Chériaux1 1 LOA, Chemin de la Hunière, 91761 Palaiseau Cedex, France 2 TOSA-DSL, 2 Avenue Gay Lussac, 78995 Elancourt, France 3 ILE, CNRS, Ecole Polytechnique, ENSTA, Institut d’optique, 91761 Palaiseau Cedex, France christophe.radier@fr.thalesgroup.com

  2. Context (1/2) • Generation of multi-tens of joules energy and several tens of femtoseconds duration pulses leading to petawatt peak power levels • Extremely high peak power pulses (10 PW) : => Vulcan laser 300 J / 30 fs (OPCPA) in LBO and KDP => Apollon-10P 150 J / 15 fs (CPA) in Ti:Sa • Management of the spectral energy distribution in terms of shape and bandwidth during their amplification process : => Temporal profile adapted to the high intensity interaction UMR 7639 http://loa.ensta.fr/

  3. Context (2/2) • OPCPA configuration in LBO / BBO / KDP : Control of the spectrum (width and shape) by the angles in the non-linear crystal and by the pump (temporal profile and intensity) • CPA configuration in Ti:Sa : Amplification of temporally chirped pulses => Gain narrowing (inhomogeneous spectral gain ) Input : Δλ½ = 85 nm Pass 6 : Δλ½ = 62 nm Frantz et Nodvik model : « Gain regime : J0(t) ~ Jsat / 1000 & G = 100 »  UMR 7639 http://loa.ensta.fr/

  4. Context (2/2) • OPCPA configuration in LBO / BBO / KDP : Control of the spectrum (width and shape) by the angles in the non-linear crystal and by the pump (temporal profile and intensity) • CPA configuration in Ti:Sa : Amplification of temporally chirped pulses = Gain shifting (amplification saturation ) Input : λc = 794 nm Pass 6 : λc = 808 nm Duration (ps) Frantz et Nodvik model : « Saturation regime : J0(t) ~ Jsat / G = 1,8 »  UMR 7639 http://loa.ensta.fr/

  5. Existing solutions • Different relevant active and passive solutions to overcome the gain narrowing issue (mJ-level pulses in the 10 fs regime) Acousto-optic programmable dispersive filter1 Multilayer Gain Narrowing compensators2,3,4 Negatively and Positively Chirped Pulsed Amplification5 • No solution to suppress the spectral shape modifications due to saturation effects at moderate or high level energy (> 1J). • F. Verluise et al., “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping”, Opt. Lett. 25, 575–577 (2000). 2. A. AmaniEilanlou et al., “Direct amplification of terawatt sub-10-fs pulses in a CPA system of Ti:sapphire laser,” Opt. Express 16, 13431–13438 (2008). 3. H. Takada, et al., “High-repetition-rate 12fs pulse amplification by a Ti:sapphire regenerative amplifier system,” Opt. Lett. 31, 1145–1147 (2006). 4. L. Antonucci, et al., “14 fs high temporal quality injector for ultra-high intensity laser,” Opt. Commun. 282, 1374–1379 (2009). 5.  M. P. Kalashnikov et al., “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B 81, 1059 (2005). UMR 7639 http://loa.ensta.fr/

  6. Spatio-Temporal Chirped Pulse Amplification (STCPA) (1/2) • Principle: Combination of temporal and spatial dispersion enable amplified spectra to be unaffected by saturation effect. i.e. spatially spreading spectral components to separately amplify them and thus deleting the gain competition UMR 7639 http://loa.ensta.fr/

  7. Spatio-Temporal Chirped Pulse Amplification (STCPA) (1/2) • Principle: Combination of temporal and spatial dispersion enable amplified spectra to be unaffected by saturation effect. Ti:Sa Crystal Pump Beam IR Beam Classical CPA scheme Oscillator Stretcher Power amplifier Compressor UMR 7639 http://loa.ensta.fr/

  8. Spatio-Temporal Chirped Pulse Amplification (STCPA) (1/2) • Principle : Combination of temporal and spatial dispersion enable amplified spectra to be unaffected by saturation effect. Ti:Sa Crystal Pump Beam IR Beam STCPA scheme Spatial spreading Spatial compression Oscillator Stretcher Power amplifier Compressor Gain zone shape adaptation UMR 7639 http://loa.ensta.fr/

  9. Spatio-Temporal Chirped Pulse Amplification (STCPA) (2/2) • Advantages : No spectral shifting while preserving energy extraction in saturation regime i.e. saturation effect is equally distributed on all the spectral range instead of only the infrared edge. • Conditions : Input pulse has to be collimated Spatial spreading law has to be inverse of that of spatial compression Pump beam has to be matched to the oblong seeded beam • Inconvenient : Gain narrowing not avoided in this configuration UMR 7639 http://loa.ensta.fr/

  10. Experiment Set Up Frequency doubled Nd:YVO4 3,7 W Ti:Sa Oscillator 3,8 nJ / 80 MHz UMR 7639 http://loa.ensta.fr/

  11. Experiment Set Up Frequency doubled Nd:YVO4 3,7 W Öffner triplet Stretcher Ti:Sa Oscillator 250 ps 3,8 nJ / 80 MHz UMR 7639 http://loa.ensta.fr/

  12. Experiment Set Up Frequency doubled Nd:YVO4 3,7 W 1,5 mJ 1 kHz Regenerative Amplifier Öffner triplet Stretcher Ti:Sa Oscillator 7,1 mJ / 1 kHz 250 ps 3,8 nJ / 80 MHz Q-switched Nd:YLF UMR 7639 http://loa.ensta.fr/

  13. Experiment Set Up Frequency doubled Nd:YVO4 + Birefringent Plate 3,7 W 500 µJ 1 kHz Regenerative Amplifier Öffner triplet Stretcher Ti:Sa Oscillator 7,1 mJ / 1 kHz 250 ps 3,8 nJ / 80 MHz Q-switched Nd:YLF UMR 7639 http://loa.ensta.fr/

  14. Experiment Set Up Cylindric lenses 180 mJ / 10 Hz Nd:YAG LaK8 Prisms Multipass amplifier 6 passes Ti:Sa Absorption : 90% Output Ø = 15 mm 40 µJ 10 Hz Frequency doubled Nd:YVO4 Pockels Cell + Birefringent Plate 3,7 W 500 µJ 1 kHz Regenerative Amplifier Öffner triplet Stretcher Ti:Sa Oscillator 7,1 mJ / 1 kHz 250 ps 3,8 nJ / 80 MHz Q-switched Nd:YLF UMR 7639 http://loa.ensta.fr/

  15. Øx,FWHM = 3000 µm Øy,FWHM = 1900 µm Experiment Set Up Cylindric lenses 180 mJ / 10 Hz Nd:YAG LaK8 Prisms Multipass amplifier 6 passes Ti:Sa Absorption : 90% Output Ø = 15 mm 40 µJ 10 Hz IR Beam Before Prisms IR Beam After Prisms Øx,y,FWHM = 1900 µm Aspect Ratio of 1,6 UMR 7639 http://loa.ensta.fr/

  16. Øx,FWHM = 3000 µm Øy,FWHM = 1900 µm Experiment Set Up Cylindric lenses 180 mJ / 10 Hz Nd:YAG LaK8 Prisms Multipass amplifier 6 passes Ti:Sa Absorption : 90% Output Ø = 15 mm 40 µJ 10 Hz IR Beam After Prisms Wavelength spreading 19 nm/mm UMR 7639 http://loa.ensta.fr/

  17. Experiment Set Up Cylindric lenses 180 mJ / 10 Hz Nd:YAG LaK8 Prisms Multipass amplifier 6 passes Ti:Sa Absorption : 90% Output Ø = 15 mm 40 µJ 10 Hz Øx,FWHM = 4000 µm Øx,FWHM = 4000 µm Øy,FWHM = 600 µm Øx,y,FWHM = 10 mm Øy,FWHM = 600 µm Left Side Output Beam Pump Right Side UMR 7639 http://loa.ensta.fr/

  18. Simulation CPA Experiment STCPA Experiment Set Up Cylindric lenses 180 mJ / 10 Hz Nd:YAG LaK8 Prisms Multipass amplifier 6 passes Output 28 mJ ~ 1,8 J/cm² Ti:Sa Absorption : 90% Ø = 15 mm 40 µJ 10 Hz FFT Calculation UMR 7639 http://loa.ensta.fr/

  19. Experiment Set Up Cylindric lenses 180 mJ / 10 Hz Nd:YAG LaK8 Prisms Multipass amplifier 6 passes Output 28 mJ ~ 1,8 J/cm² Ti:Sa Absorption : 90% Ø = 15 mm 40 µJ 10 Hz Near field Far field No angular and transverse chirp UMR 7639 http://loa.ensta.fr/

  20. Conclusion • First amplification scheme in Ti:Sa using a combination of spatial and temporal chirp • STCPA concept avoids effects of saturation / enables a control of the amplified spectrum at high energy • Using appropriate chirp tool : output beam free of angular and transverse chirp • Fully relevant technique for obtaining very intense and short laser pulses (energy in excess of 10’s of Joules) with good temporal quality UMR 7639 http://loa.ensta.fr/

  21. Thank you ! UMR 7639 http://loa.ensta.fr/

More Related