1 / 21

Hull & White Trinomial Trees

Arvid Kjellberg - Jakub Lawik - Juan Mojica - Xiaodong Xu. Hull & White Trinomial Trees. The outline of our Project. by Journal of Derivatives in Fall 1994 Where to use it ?  if there is a function x = f(r) of the short rate r that follows a mean reverting arithmetic process

hedya
Télécharger la présentation

Hull & White Trinomial Trees

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ArvidKjellberg- JakubLawik - Juan Mojica - Xiaodong Xu Hull & White Trinomial Trees

  2. The outline of our Project • by Journal of Derivatives in Fall 1994 • Whereto use it?  ifthereis a function x = f(r) of the short rate r that follows a mean reverting arithmetic process • Our project: • Hull and White trinomial tree building procedure • Excel Implementation

  3. Theoretical background • Short Rate (or instantaneous rate) • The interest rate charged (usually in some particular market) for short term loans. • Bonds, option & derivative prices can depend only on the process followed by r (in risk neutral world) • t-t+Δt investor earn on average r(t)Δt • Payoff:

  4. And we define the price at time t of zero-coupon bond that pays off $1at time T by: Theoretical background This equation enables the term structure of interest rates at any given time to be obtained from the value of r at that time and risk-neutral process for r. • Short rate • And we define the price at time t of zero-coupon bond that pays off $1at time T by: • If R (t,T) is the continuously compounded interest rate at time t for a term of T-t: • Combine these formulas above: • This equation enables the term structure of interest rates at any given time to be obtained from the value of r at that time and risk-neutral process for r.

  5. Vasicek model • How is related to the Hull/White model? • was further extended in the Hull-White model • Asumes short rate is normal distributed • Mean reverting process (under Q) • Drift in interest rate will disappear if • a : how fast the short rate will reach the long-term mean value • b: the long run equilibrium value towards which the interest rate reverts • Term structure can be determined as a function of r(t) once a, b and σ are chosen. r = θ = b/a

  6. Ho-Lee model • How is related to the Hull/White model? • Ho-Lee model is a particular case of Hull & White model with a=0 • Assumes a normally distributed short-term rate • SR drift depends on time • makes arbitrage-free with respect to observed prices • Does not incorporate mean reversion • Short rate dynamics: • σ (instantaneous SD)  constant • θ(t) defines the average direction that r moves at time t

  7. Ho-Lee model • Market price of risk proves to be irrelevant when pricing IR derivatives • Average direction of the short rate will be moving in the future is almost equal to the slope of instantaneous forward curve

  8. Hull-White One-factor model • No-arbitrage yield curve model • Parameters are consistent with bond prices implied in the zero coupon yield curve • In absence of default risk, bond price must pull towards par as it approaches maturity. • Assumes SR is normally distributed & subject to mean reversion • MR  ensures consistency with empirical observation: long rates are less volatile than short rates. • HWM generalized by Vasicek • θ(t) deterministic function of time which calibrated against the theoretical bond price • V(t) Brownian motion under the risk-neutral measure • a speed of mean-reversion

  9. Volatility (estimation and structure) • Input parameters for HWM • a : relative volatility of LR and SR • σ : volatility of the short rate • Not directly provided by the market (inferred from data of IR derivatives)

  10. Trinomialtreeexample • Call option, two step, Δt=1, strike price =0.40. Our account amount $100. Probabilities: 0.25,0.5 & 0.25 • Payoff at the end of second time step: • Rollback precedure as: (pro1*valu1+...+pro3*valu3)e-rΔt

  11. Trinomialtreeexample • Alternative branching possibilities • The pattern upward is useful for incorporating mean reversion when interest rates are very low and Downward is for interest rates are very high.

  12. Howtobuild a tree? • HWM for instantaneous rate r: • First Step assumptions: • all time steps are equal in size Δt • rate of Δt,(R) follows the same procedure: • New variable called R* (initial value 0)

  13. How to build a tree? • : spacing between interest rates on the tree  for error minimization. • Define branching techniques • Upwards a << 0 • Downwards a >> 0 • Normal a = 0 • Define probabilities(depends on branching) • probabilities are positive as long as: Straight / Normal Branching

  14. How to build a tree? • With initial parameters: σ = 0.01, a = 0.1,Δt = 1 ΔR=0.0173,jmax=2,we get:

  15. How to build a tree? • Second step  convert R* into R tree by displacing the nodes on the R*-tree • Define αi as α(iΔt),Qi,j as the present value of a security that payoff $1 if node (I,j) is reached and 0.Otherwise,forward induction • With continuously compounded zero rates in the first stage • Q0,0 is 1 • α0=3.824% • α0 right price for a zero-coupon bond maturing at time Δt • Q1,1=probability *e-rΔt=0.1604 • Q1,0=0.6417 and Q1,-1=0.1604.

  16. How to build a tree? • Bond price(initial structure) = e-0.04512x2=0.913 • Solving for alfa1= 0.05205 • It means that the central node at time Δt in the tree for R corresponds to an interest rate of 5.205% • Using the same method, we get: • Q2,2=0.0182,Q2,0=0.4736,Q2,-1=0.2033 and Q2,-2=0.0189. • Calculate α2,Q3,j’s will be found as well. We can then find α3 and so on…

  17. How to build a tree? • Finally we get:

  18. Modelpresentation (excel)

  19. Option valuation issues • Underlying interest rate • Payoff date • American options

  20. Modelpresentation (excel) 5,4% 5,0% 4,6% 4,0% 4,0% 3,7% 4,0% 3,5% 3,2% 3,0%

  21. ThankYou!!!

More Related