1 / 36

Relativistic parameterization of the SCC-DFTB method

Relativistic parameterization of the SCC-DFTB method. Henryk Witek Institute of Molecular Science & Department of Applied Chemistry National Chiao Tung University Hsinchu, Taiwan. Aims. Provide the DFTB community with a general and easy-to-use tool for developing Slater-Koster files

holland
Télécharger la présentation

Relativistic parameterization of the SCC-DFTB method

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Relativistic parameterization of the SCC-DFTB method Henryk Witek Institute of Molecular Science & Department of Applied Chemistry National Chiao Tung University Hsinchu, Taiwan 232nd ACS meeting in SF, 12.09.2006

  2. Aims • Provide the DFTB community with a general and easy-to-use tool for developing Slater-Koster files • Develop a reliable set of SCC-DFTB parameters suitable for modeling chemical reactions

  3. Requirements • Important issues of the project • general character • relativistic framework • well-defined procedure • high automaticity • error control – test suite

  4. Theoretical framework • 4-component Dirac-Kohn-Sham equation • Modification of relativistic Dirac-Slater code of J.P. Desclaux • Comp. Phys. Comm. 1, 216 (1969) • Comp. Phys. Comm. 9, 31 (1975) • Density confinement • Spinor confinement

  5. Slater-Koster files • One-center quantities • orbital energies • orbital hardness • orbital spin-densities interaction parameters • Two-center quantities • Hamiltonian integrals • overlap integrals • repulsive potentials

  6. Input description • Atomic information • nuclear charge • number of electrons • shell occupations • Method information • exchange-correlation functional type • confinement radius • way to construct molecular XC potential • density superposition • potential superposition

  7. Output: spinors of carbon * atom electronic structure and final shell energies:     shell type      occupation       final energy  ========  ========  ==========     1 S1/2           2.00             -11.29598       2 S1/2           2.00              -0.44465       2 P1/2           1.00              -0.12665       2 P3/2           1.00              -0.12623   * radial overlap integrals for spinors     spinor 1        spinor 2            overlap integral    ======     ======         ===========      1 S1/2          2 S1/2             -0.000000000022

  8. Output: spinors of lead   * atom electronic structure and final shell energies:    shell type      occupation       final energy  =======   ========  =========      1 S1/2 2.00           -3256.80560      2 S1/2 2.00            -585.97772      2 P1/2 2.00            -564.09214      2 P3/2 4.00            -482.19388      3 S1/2 2.00            -141.89459 … … …       5 D3/2 4.00              -0.79336      5 D5/2 6.00              -0.68107      6 S1/2 2.00              -0.33752      6 P1/2 2.00              -0.09002      6 P3/2 0.00               -0.04704

  9. Output: spinors of lead    * radial overlap integrals for spinors    spinor 1        spinor 2            overlap integral   ======     ======          ===========     1 S1/2          2 S1/2              0.000000000068     1 S1/2          3 S1/2              0.000000000016     2 S1/2          3 S1/2              0.000000000186     2 P1/2          3 P1/2              0.000000000099     2 P3/2          3 P3/2              0.000000000094 … … …      2 P3/2          6 P3/2              0.000000000048     3 P3/2          6 P3/2             -0.000000000358     4 P3/2          6 P3/2             -0.000000001312     5 P3/2          6 P3/2              0.000000000096

  10. Output: atomic density  * error for the fitted atomic density at grid points    density           norm1              norm2             norm∞ ======      =======       ======      ======      dn             0.000010         0.000019         0.000104 * renormalization of fitted density       => density renormalized from 5.999981 to 6.000000 electrons C   * error for the fitted atomic density at grid points    density           norm1              norm2             norm∞ ======      =======       ======      ======       dn            0.030532         0.049705         0.147628 * renormalization of fitted density       => density renormalized from 82.000529 to 82.000000 electrons Pb

  11. radial density of lead

  12. Semi-relativistic orbitals • Scalar relativistic valence orbitals are obtained by: • neglecting small component • averaging spin-orbit components of every scalar orbital V.Heera, G. Seifert, P. Ziesche, J. Phys. B 17, 519 (1984)

  13. Large vs. small component

  14. Averaging spin-orbit split components of a spinor

  15. Output: orbitals of carbon  * info about scalar atomic orbitals     num    orbital     occupation       final energy       type    ====   =====  ========  =========    =====      1       1s           2.00 -11.29598         core      2       2s         2.00   -0.44465         valence      3       2p 2.00    -0.12637         valence * error for the fitted curve at grid points   orbital           norm1              norm2            norm∞  =====       ======        ======       ======      2s      0.000231        0.000721        0.005025      2p       0.000013       0.000025        0.000108 * renormalization after fit and neglecting small component      => orbital 2s renormalized from     0.999957   to     1.0d0      => orbital 2p renormalized from     0.999957   to     1.0d0

  16. Output: orbitals for lead  * info about scalar atomic orbitals     num     orbital     occupation       final energy         type    ====  ======  ========  ==========    =====      1       1s           2.00           -3256.80560         core      2       2s           2.00            -585.97772         core      3       2p           6.00            -509.49330         core      4       3s           2.00            -141.89459         core      5       3p           6.00            -119.52024         core      6       3d          10.00             -94.16394         core      7       4s           2.00             -32.79553         core      8       4p           6.00             -25.30912         core      9       4d          10.00             -15.92391         core      10       4f          14.00              -5.84011         core      11       5s           2.00              -5.53058        valence      12       5p           6.00              -3.33518        valence      13       5d        10.00            -0.72598        valence      14       6s           2.00               -0.33752        valence      15       6p           2.00               -0.06137        valence

  17. Output: orbitals for lead  * fitting valence orbitals with gaussians * error for the fitted curve at grid points   orbital           norm1              norm2             norm∞  =====       ======        ======       =======      5s        0.000048        0.000138        0.002025      5p        0.000047        0.000094        0.000988      5d        0.000143        0.000245        0.000807      6s        0.000108        0.000257        0.003610      6p        0.000026        0.000045        0.000371 * renormalization after fit and neglecting small component      => orbital 5s renormalized from     0.999235   to     1.0d0      => orbital 5p renormalized from     0.990674   to     1.0d0      => orbital 5d renormalized from     0.998799   to     1.0d0      => orbital 6s renormalized from     0.999913   to     1.0d0      => orbital 6p renormalized from     0.991615   to     1.0d0

  18. Relativistic vs. non-relativistic atomic orbitals: carbon atom

  19. Relativistic vs. non-relativistic atomic orbitals: carbon atom

  20. Relativistic vs. non-relativistic atomic orbitals: lead atom

  21. Relativistic vs. non-relativistic atomic orbitals: lead atom

  22. Confinement potential • Additional term Vconf in Dirac-Kohn-Sham effective potential • contraction of orbital’s exponential tail • relaxation of basis set • additional variational parameter in the formalism

  23. Effect of the confinement potentialradial density of Pb

  24. Repulsive potentials • Effective two-center, distance-dependent potentials accounting for • repulsion between atomic chemical cores • double counting terms in electronic part • Total DFTB energy is

  25. Constructing C-C repulsive potential M. Sternberg, Ph.D. Thesis

  26. repulsive C-C potential Malolepsza, Witek, and Morokuma, ChPL 412, 237 (2005)

  27. performance of new C-C potential Malolepsza, Witek, and Morokuma, ChPL 412, 237 (2005)

  28. Resultant repulsive potentials

  29. Derivatives of repulsive potentials

  30. Analytical form of potentials

  31. Analytical form of potentials • Atomization energies

  32. Analytical form of potentials • Equilibrium structures

  33. First derivatives of repulsive potential NO2 O3 NO2- H2O2 H2O H2O2 H3O+ NH3 O3 H2 O2

  34. First derivatives of repulsive potential NO2- HNO NO2, HNO NO NH3 HNO H2O2 H2O2 H3O+ H2O

  35. Conclusions • Convenient relativistic tool for automatic DFTB parameterization is suggested • New form of potential parameterization is proposed

  36. Acknowledgements • Christof Köhler • Keiji Morokuma • Marcus Elstner • Thomas Frauenheim

More Related