1 / 34

Understanding Geology and Its Engineering Properties …

Understanding Geology and Its Engineering Properties …. From A Civil Engineer’s Point of View …. Dr.ÖZGÜR YILMAZER Geotechnical Engineer MSc . Geological Engineering MSc . Civil Engineering PhD . Geological Engineering. INTRODUCTION. ROCKS ( Definition : Minerals ).

holland
Télécharger la présentation

Understanding Geology and Its Engineering Properties …

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. UnderstandingGeologyandItsEngineeringProperties… From A CivilEngineer’sPoint of View… Dr.ÖZGÜR YILMAZERGeotechnicalEngineer MSc. GeologicalEngineering MSc. CivilEngineering PhD. GeologicalEngineering

  2. INTRODUCTION ROCKS (Definition: Minerals) • A rock is defined as a consolidated mixture of minerals. A mixture of minerals implies the presence of more than one mineral grain, but not necessarily more than one type of mineral. A rock can be composed of only one type of mineral, but most rocks are composed of several different types of minerals. • A mineral is; • a naturally occurring substance • that is solid and stable atroomtemperature, • representable by a chemical formula, • usuallyabiogenic, and • has an orderedatomicstructure. • It is different from arock,in this sense, which can be an aggregate of minerals or non-minerals, and does not have a specific chemical composition.

  3. INTRODUCTION ROCKS (Definition: Minerals) There are over 4,900 known mineral species. Thesilicatemineralscompose over 90% of theEarth’scrust. Silicon and oxygen constitute approximately 75% of the Earth's crust, which translates directly into the predominance of silicate minerals.

  4. INTRODUCTION ROCKS (Definition: Minerals) Minerals are distinguished by various chemicaland physicalproperties. Differences inchemicalcompositonandcrystalstructure distinguish various species, and these properties in turn are influenced by the mineral's geological environment of formation. Mineralsaremade of elementsthatarebondedtogetherto form stablesolidmatters. HydrogenandOxigenelementsbondtogetherto form H2O (water) mineral. Similarly, NaandClelementscometogetherto form NaCl (salt).

  5. INTRODUCTION ROCKS (Definition: Elements) A chemical element is a pure chemicalsubstance consisting of one type of atom distinguished by itsatomicnumber, the number of protons in itsnucleus.

  6. INTRODUCTION ROCKS (Definition: Elements) When two distinct elements are chemically combined, with the atoms held together by chemicalbonds, the result is termed a chemical compound. Q_1. How do atoms bond together to form minerals? A_1. Elements bond by sharing or transferring electrons Q_2. Why don't elements prefer to remain alone, unbonded? A_2. Elements like to have their outer electron orbital full of electrons, so elementswith full orbitals are very stable (e.g., the noble gases He, Ar, Kr, Xe).

  7. ROCK TYPES Rocks are grouped into three main categories:

  8. ROCK CYCLE

  9. IGNEOUS ROCKS DEFINITION AND SOURCES Igneous rocks (from the Greek word for fire) form from molten rock (magma),crystallizes and solidifies.Igneous rocks form in three main places: where lithospheric plates pull apart at mid-ocean ridges, where plates come together at subduction zones and where continental crust is pushed together, making it thicker and allowing it to heat to melting.

  10. INTRODUCTION ROCKS Igneous rocks are divided into two groups, intrusive andextrusive, depending upon where the molten rock solidifies

  11. IGNEOUS ROCKS DEFINITION : INTRUSIVE ROCKS Intrusive, or plutonic igneous rock forms when magma is trapped deep inside the Earth. Great globs of molten rock rise toward the surface. Some of the magma may feed volcanoes on the Earth's surface, but most remains trapped below, where it cools very slowly over many thousands or millions of years until it solidifies.

  12. IGNEOUS ROCKS DEFINITION : INTRUSIVE ROCKS Slow cooling means the individual mineral grains have a very long time to grow, so they grow to a relatively large size. Intrusive rocks have a coarse grained texture. The image at right shows granite, an intrusive igneous rock..

  13. IGNEOUS ROCKS DEFINITION : EXTRUSIVE ROCKS Extrusive, or volcanic, igneous rock is produced when magma exits and cools outside of, or very near the Earth's surface.

  14. IGNEOUS ROCKS DEFINITION : VOLCANIC (EXTRUSIVE) ROCKS These are the rocks that form at erupting volcanoes.The magma, called lava when molten rock erupts on the surface, cools and solidifies almost instantly when it is exposed to the relatively cool temperature of the atmosphere.

  15. IGNEOUS ROCKS DEFINITION : EXTRUSIVE ROCKS Quick cooling means that mineral crystals don't have much time to grow, so these rocks have a very fine-grained or even glassy texture. Hot gas bubbles are often trapped in the quenched lava, forming a bubbly, vesicular texture. Pumice, obsidian, and basalt are all extrusive igneous rocks.

  16. IGNEOUS ROCKS DEFINITION : ROCK TEXTURE Igneous rocktextures are used bygeologists in determining the mode of origin igneous rocks and are used in rock classification. There are six main types of textures; 1) Phaneritic, 2) Aphanitic, 3) Porphyritic, 4) Glassy, 5) Pyroclastic and 6) Pegmatitic. Aphanitic (notvisible) rocks in contrast to Phaneriticrocks, typically form from lava which crystallize rapidly on or near the Earth‘ssurface. Because theymake contact with theatmosphere they cool quickly, so the minerals do not have time to form large crystals. The individual crystals in an aphanitic igneous rock are not distinguisable to the naked eye. Examples of aphanitic igneous rock includebasalt, andesite, andrhyolite.

  17. IGNEOUS ROCKS DEFINITION : ROCK TEXTURE Glassy or vitreous textures occur during some volcanic eruptions when the lava is quenched so rapidly that crystallization cannot occur. The result is a natural amorphous glass with few or no crystals. Examples includeobsidian andpumice. Phaneritic(phaner = visible) textures are typical of intrusive igneous rocks, these rocks crystallized slowly below the Earth's surface. As a magma cools slowly the minerals have time to grow and form large crystals. The minerals in a phaneritic igneous rock are sufficiently large to see each individualcyrstalwith thenakedeye. Examples of phaneritic igneous rocks are gabro, dioriteand granite. Pegmatitictexture occurs during magma cooling when some minerals may grow so large that they become massive (the size ranges from a few cmto several metres).

  18. IGNEOUS ROCKS DEFINITION : ROCK TEXTURE Porphyritic textures develop when conditions during cooling of a magma change relatively quickly. The earlier formed minerals will have formed slowly and remain as large crystals, whereas, sudden cooling causes the rapid crystallization of the remainder of the melt into a fine grained (aphanitic)matrix. The result is an aphanitic rock with some larger crystals (phenocrysts) imbedded within its matrix. Porphyritic texture also occurs when magma crystallizes below avolcanobut is erupted before completing crystallization thus forcing the remaining lava to crystallize more rapidly with much smaller crystals.

  19. IGNEOUS ROCKS DEFINITION : ROCK TEXTURE Pyroclastic(pyro=igneous, clastic = fragment) textures occur when explosive eruptions blast the lava into the air resulting in fragmental, typically glassy material which fall asvolcanicash, lapilli, andvolcanicbombs.

  20. SUMMARY IGNEOUS ROCKS

  21. SUMMARY IGNEOUS ROCKS

  22. SUMMARY IGNEOUS ROCKS Intrusive igneous rocks are the rocks which cool down really slowly under the surface. All igneous rocks doesn’t cool the same way. That’s the reason why they don’t look all the same too. Intrusive igneous rocks have large crystals. The granite stone is the example of intrusive igneous rock.

  23. SUMMARY IGNEOUS ROCKS ?

  24. SUMMARY IGNEOUS ROCKS ?

  25. SUMMARY IGNEOUS ROCKS ?

  26. SUMMARY IGNEOUS ROCKS ?

  27. SUMMARY IGNEOUS ROCKS ?

  28. SUMMARY IGNEOUS ROCKS ?

  29. SUMMARY IGNEOUS ROCKS ?

  30. SUMMARY IGNEOUS ROCKS ?

  31. SUMMARY IGNEOUS ROCKS ?

  32. SUMMARY IGNEOUS ROCKS ?

  33. SUMMARY IGNEOUS ROCKS ?

  34. SUMMARY IGNEOUS ROCKS ?

More Related