1 / 43

Progress Towards New Heterocycle-Containing Proton Exchange Membranes

Progress Towards New Heterocycle-Containing Proton Exchange Membranes. February 7, 2008 Corinne Lipscomb Mahanthappa Group. Hydrogen Fuel Cells. The H-Racer. Have been used in: NASA missions since Gemini Concept vehicles Toys. Are being researched for: Automobiles

hypatia
Télécharger la présentation

Progress Towards New Heterocycle-Containing Proton Exchange Membranes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Progress Towards New Heterocycle-Containing Proton Exchange Membranes February 7, 2008 Corinne Lipscomb Mahanthappa Group

  2. Hydrogen Fuel Cells The H-Racer • Have been used in: • NASA missions since Gemini • Concept vehicles • Toys • Are being researched for: • Automobiles • Cell phones • Portable electronics • NASA’s continued use Completely Hydrogen-Powered Car http://www.inhabitat.com/2007/05/25/shanghai-to-build-hydrogen-fuel-cell-infrastructure/ Hoffman, P. Tomorrow's Energy. The MIT Press: Cambridge, Massachusetts, 2001.

  3. The Hydrogen Fuel Cell • External circuit for electrons • Oxygen ions and protons form H2O • Palladium Catalyst • Proton Exchange (Polymer Electrolyte) Membranes http://blog.wired.com/cars/2007/05/index.html Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel Cells 2001, 1, 5-39.

  4. Ideal Material • High proton conductivity • Low electron conductivity • Low permeability to fuel and oxidant • Low water permeability • Chemically, thermally, and mechanically stable • Inexpensive • Ability to be fashioned into Membrane Electrode Assemblies (MEAs)

  5. The Industry Standard • Nafion - 1964 • E. I. du Pont de Nemours and Co. Connolly, D. J.; Gresham, W. F. (E.I. Du Pont de Nemours and Company). USA. U. S. Pat. 3,282,875, 1966.

  6. Synthesis of Nafion • Free radical initiated • Pressure to control • gaseous monomer Connolly, D. J.; Gresham, W. F. (E.I. Du Pont de Nemours and Company). USA. U. S. Pat. 3,282,875, 1966.

  7. Advantages of Nafion • Stable material • Selective ion permeability • Compatible with current fuel cell technology • High proton conductivity under aqueous conditions ~ 0.1 S/cm Conductivity Typically measured in Seimens/cm (S/cm) 1 S = 1 -1 Schmidt-Rohr, K.; Chen, Q. Nat. Mater. 2008, 7, 75-83. Deluca, N. W.; Elabd, Y. A. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 2201-2225.

  8. Disadvantages of Nafion • Low conductivity at low water content • Permeable to MeOH (Direct Methanol Fuel Cell) • Poor mechanical strength at high temperatures • Processability and fabrication issues DOE goal - 0.1 S/cm at 120C and 50% relative humidity Nafion cannot meet this goal. Deluca, N. W.; Elabd, Y. A. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 2201-2225. Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath, J. E. Chem. Rev. 2004, 104, 4587-4611.

  9. Proton Conduction Mechanisms • Vehicular diffusion • Proton carried by one molecule • Diffusion • Protons transferred slowly • Structural diffusion or proton “hopping” • Grotthus mechanism in H2O • Rearrangement of hydrogen bonds simultaneously • Protons transferred quickly Kreuer, K. D. Solid State Ionics 1997, 94, 55-62.

  10. Water Mimics • Mineral acids - H2SO4, H3PO4 • Heterocycles • High boiling • Immobilization possible

  11. Tg - Glass Transition Temperature • Amorphous solids - glasses, polymers, etc. • Below Tg - ‘solid-like’ behavior • material becomes rigid upon cooling • Above Tg - ‘liquid-like’ behavior • material softens upon heating • Some variability - depends on the heating/cooling rate • Above Tg segmental mobility increases significantly • important in conductivity

  12. Polymer Molecular Weights Mn - Number Average Molecular Weight PDI - Polydispersity Index the breadth of the distribution GPC - Gel Permeation Chromatography

  13. Nomenclature Small Molecules Polymer Heterocycle-Spacer length Heterocycle-Spacer length-Polymer Im5Si Tz6

  14. Conducting Heterocycle Solvents EW = 740 g/mol Kreuer, K. D.; Fuchs, A.; Ise, M.; Spaeth, M.; Maier, J. Electrochim. Acta 1998, 43, 1281-1288.

  15. Impedance Spectroscopy • Impedance • Real term - Resistance • Change in amplitude • Imaginary term - Capacitance • Phase shift • At high freq. goes to zero Conductivity Experimental • Apply sinusoidal potential • Measure current response • Usually done at high frequencies

  16. Proton Conductivity Imidazole doped Pyrazole doped Heterocycles can conduct protons like water. Kreuer, K. D.; Fuchs, A.; Ise, M.; Spaeth, M.; Maier, J. Electrochim. Acta 1998, 43, 1281-1288.

  17. Imidazole Immobilization ex. Herz, H. G.; Kreuer, K. D.; Maier, J.; Scharfenberger, G.; et al. Electrochim. Acta 2003, 48, 2165-2171.

  18. Free Radical Polymerization

  19. Proton Conductivities Both polymers stable to >200°C 10a (Tg = 51°C) 6 atom spacer 10b (Tg = 32°C) 12 atom spacer Immobilized imidazoles can conduct protons. Herz, H. G.; Kreuer, K. D.; Maier, J.; Scharfenberger, G.; et al. Electrochim. Acta 2003, 48, 2165-2171.

  20. Poly(siloxane) Backbones V4 D3 Persson, J. C.; Jannasch, P. Macromolecules 2005, 38, 3283-3289.

  21. Anionic ROP Mechanism THF V4 D3

  22. Benzimidazole Poly(siloxanes) Persson, J. C.; Jannasch, P. Macromolecules 2005, 38, 3283-3289.

  23. Tg and Heterocycle Content Thermally stable to ~200ºC Tg rises with heterocycle content for poly(siloxanes). Persson, J. C.; Jannasch, P. Macromolecules 2005, 38, 3283-3289.

  24. H+ Conductivity vs. BzIm Content • At lower temperatures - conductivity depends on Tg • At higher temperatures - conductivity depends on heterocycle content For conductivity to be unaffected by segmental mobility: T > Tg + 50ºC Persson, J. C.; Jannasch, P. Macromolecules 2005, 38, 3283-3289.

  25. PEO Backbones Persson, J. C.; Jannasch, P. Chem. Mater. 2006, 18, 3096-3102.

  26. Stability and Physical Properties Tg rises with heterocycle content for multiple polymers. Persson, J. C.; Jannasch, P. Chem. Mater. 2006, 18, 3096-3102.

  27. Conductivity and Mass Fraction Increasing Benzimidazole Content Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Bz8PEO Absolute Proton Conductivity Intrinsic Proton Conductivity Persson, J. C.; Jannasch, P. Chem. Mater. 2006, 18, 3096-3102.

  28. Triazole Tethered Polyacrylates Tz6 HMTz6 Martwiset, S.; Woudenberg, R. C.; Granados-Focil, S.; et. al. Solid State Ionics 2007, 178, 1398-1403.

  29. Triazole Tethered Polyacrylates Tz6 HMTz6 PEG n = 6-8 • X, Y, and Z controlled with feed ratios Martwiset, S.; Woudenberg, R. C.; Granados-Focil, S.; et. al. Solid State Ionics 2007, 178, 1398-1403.

  30. Conductivity with Acid Doping Sample 2 Sample 3 Sample 1 Sample 4 Sample 5 Sample 6 Samples had 28 mol% PEG and 30 mol% HMTz6 compared to Tz6 Doping with TFA increases conductivity significantly Martwiset, S.; Woudenberg, R. C.; Granados-Focil, S.; et. al. Solid State Ionics 2007, 178, 1398-1403.

  31. Proton Conductivity & Tg Sample A Sample B Sample C Sample D Sample E Samples had the same Mol % HMTz6 compared to Tz6 As Tg goes down -  goes up Martwiset, S.; Woudenberg, R. C.; Granados-Focil, S.; et. al. Solid State Ionics 2007, 178, 1398-1403.

  32. Intrinsic Conductivity & Tg As more PEG added, mass fraction of heterocycle goes down • Decreasing mass fraction of • the heterocycle: • decreases Tg • decreases conductivity Sample A Sample B Sample C Sample D Sample E • Decreasing Tg: • increases conductivity Mass fraction of heterocycle and Tg are interconnected. Martwiset, S.; Woudenberg, R. C.; Granados-Focil, S.; et. al. Solid State Ionics 2007, 178, 1398-1403.

  33. Imidazole Polysiloxanes Im5 Im8 Scharfenberger, G.; et. al. J. Fuel Cell 2006, 6, 237-250.

  34. Imidazole Polysiloxanes Im5 Partial Hydrolysis 70% cyclic trimers Same polymerization carried out with Im8 Scharfenberger, G.; et. al. J. Fuel Cell 2006, 6, 237-250.

  35. Triazole Tethered Polysiloxanes Granados-Focil, S.; Woudenberg, R. C.; Yavuzcetin, O.; et. al. Macromolecules 2007, 40, 8708-8713.

  36. Triazole Tethered Polysiloxanes Tz8Si FBz2Si Tz2Si Granados-Focil, S.; Woudenberg, R. C.; Yavuzcetin, O.; et. al. Macromolecules 2007, 40, 8708-8713.

  37. Conductivity & Tether Length Im8Si Tg = 7°C 28% Het. Im5Si Tg = 41°C 36% Het. Tz8Si Tg = -5°C 28% Het. 1000/K Tz2Si Tg = 19°C 43% Het. Different heterocycles need different tether lengths. Granados-Focil, S.; Woudenberg, R. C.; Yavuzcetin, O.; et. al. Macromolecules 2007, 40, 8708-8713. Scharfenberger, G.; et. al. J. Fuel Cell 2006, 6, 237-250.

  38. Conductivity and pKa pKa ~ 14 • Tz2Si higher  than FBz2Si • Despite having: • the same pKa • the same tether length • Tg factored out T-Tg Same pKas different conductivities Granados-Focil, S.; Woudenberg, R. C.; Yavuzcetin, O.; et. al. Macromolecules 2007, 40, 8708-8713.

  39. Conductivity and pKa pKa = 13.6 pKa = 18.6 Tz8Si Im8Si • Despite having: • Tg factored out • the same tether length • the same mass fraction • a higher pKa Higher pKa has a higher conductivity Granados-Focil, S.; Woudenberg, R. C.; Yavuzcetin, O.; et. al. Macromolecules 2007, 40, 8708-8713. Scharfenberger, G.; et. al. J. Fuel Cell 2006, 6, 237-250.

  40. Conductivity and pKa • Tg masks pKa effects • Mass fraction more dominant than pKa • Different heterocycles form the aggregates • necessary for proton conduction under • different conditions. Each polymer system should be optimized separately.

  41. Conclusions • Tg is the most dominant effect • Mass fraction of the heterocycle also dominant • Tether length and pKa are concerns • Immobilization decreases vehicular diffusion allowing for structural diffusion • Polymers shown -  ~ 10-6 - 10-3 S/cm • Nafion -  ~ 10-1 S/cm Heterocycle-containing polymers present a new route towards non-aqueous proton conduction at high temperatures

  42. Future Directions • Optimization of tether length, mass fraction,Tg, and acid doping • Block copolymers - systematic control over morphology and mechanical properties • Living polymerization techniques - systematic control over PDI and molecular weight • Protocols for evaluation of PEMs • TGA for thermal stability, DSC for Tg, & GPC for polydispersity index and molecular weight • EIS for proton conductivity • Protocols for hydrogen fuel cells • Rheology for mechanical stability • Membrane Electrode Assemblies

  43. Acknowledgements Professor Mahesh Mahanthappa • The Mahanthappa Group • Erin Henninger • Joan Widin • Chris Bates • David Bunck • Practice Talk Antendees • Mary Beth Anzovino • Matt Bierman • Maren Buck • Matt Christianson • Jeremy Higgins • Beth Landis • Katie Partridge • Dr. Dino Ress • Helpful Conversations • Beth Landis

More Related