1 / 137

MSAN kurs @Eye Networks, 24. og 25. oktober

MSAN kurs @Eye Networks, 24. og 25. oktober. ZyXEL Communications Anders Opsahl ( ao@zyxel.no ). Agenda. Dag 1, grunnleggende Kjapt om IES-5xxx/-6000 - Antall og typer linjekort - Måter å aksessere DSLAM - Firmware-oppgradering - Backup / restore / save VLAN og IP

idalia
Télécharger la présentation

MSAN kurs @Eye Networks, 24. og 25. oktober

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MSAN kurs@Eye Networks, 24. og 25. oktober ZyXEL Communications Anders Opsahl (ao@zyxel.no)

  2. Agenda Dag 1, grunnleggende Kjapt om IES-5xxx/-6000 - Antall og typer linjekort - Måter å aksessere DSLAM - Firmware-oppgradering- Backup / restore / save VLAN og IP - Sette IP og gateway, samt Management-VLAN - Fixed og untagged, samt PVID Port-setup - Lage profil, sette profil på port(er) - Åpne og stenge porter - PVC-setup Enkel feilsøking - Hva om det ikke går trafikk på en port? - Hva om linjekortet ikke blir "active"? Dag 2 Port-setup - VDSL2 (Profil, PSD-maske) - VDSL2 med ADSL2+ fallback - SHDSL-bundling - EFM-oppsett Tjenester - Quality of Service - Multicast ACL - Anti-MAC-spoofing

  3. VDSL1 vs. VDSL2

  4. VDSL Band Plan VDSL Band Plan PSD (dBm/Hz) POTS DS1 US1 DS2 US2 138kHz Frequency (MHz) 3.75MHz 5.2MHz 8.5MHz 12MHz

  5. VDSL2 Band Plan VDSL2 Band Plan PSD (dBm/Hz) DS1 US1 DS2 US2 DS3 138kHz US3 30MHz POTS Frequency (MHz) 3.75MHz 5.2MHz 8.5MHz 12MHz 18MHz

  6. VDSL2 Profile

  7. VDSL2 Band Plan VDSL2 Band Plan Table (998) • Plan 998 approved for ANSI T1 (for North America, Japan and Europe) • • Plan 997, 998 approved for ETSI (for Europe) • • US0 for Annex B: 120 – 276 kHz, DS1 for Annex B: 276 kHz -

  8. PSD (dBm/Hz) Frequency (MHz) Basics of the DMT Technology QAM-Modulated subchannel (tone) individually optimized as a function of impairments Unused tone • Each band divided into hundreds of 4kHz sub-bands • • Each sub-band carries a narrow QAM signal • • ADSL compatible tone spacing (4.3125kHz) • • Bandwidth optimization and frequency division duplexing occur by zeroing many sub-bands

  9. Basics of the DMT Technology • DMT (Discrete Multi-tone) Ideal bits/tone Typical Loop Gain Actual bits/tone Ideal bits/tone Typical Loop Gain Actual bits/tone

  10. PSD & PSD Mask • Power Spectral Density • Defines the distribution of Power on a VDSL line • PSD Mask is a Template that specifies the max. allowable PSD for a Line • The unit of PSD is dBm/Hz

  11. Limit PSD Mask • Reduce the impact of interference and attenuation • Specified by ITU-T 993.2 • MIB PSD Mask allows administrator to Tune the Limit PSD Mask

  12. Configuration - Limit PSD Mask

  13. Optional Band • Optional Band controlled by Limit PSD Mask. • Optional Band is used for upstream transmission • Negotiated during line Initiation

  14. Annex A US0 Mask

  15. VDSL UPBO/DPBO

  16. Upstream Power Back-off PSD PSD PSD f f f PSD f PSD f • Full-power upstream transmissions on short loops result in high-level far-end crosstalk (FEXT) noise on long (far) loops. • Upstream bit rates on long loops can be dramatically reduced.

  17. Upstream Power Back-off (Cont.) PSD PSD PSD f f f PSD f PSD f • Upstream transmitters must reduce their PSDs so the levels of FEXT they inject to shorter loops are lower. • The process of reducing the upstream PSD is known generically as up stream power back-off (UPBO)

  18. Upstream Power Back-off (Cont.) • Varying telephone wiring lengths cause cross talk • Enable UBPO to adjust the Transmit PSD based on reference line length

  19. Upstream Power Back-off • General Conclusions • Non-FEXT dominated environment: • Do not apply UPBO! • It only causes SNR reduction in short loops with no SNR • improvement in long loops. • FEXT-dominated environment: • Apply UPBO for all loops shorter than the longest one! • An appropriate UPBO value can always be found that avoids any SNR reduction and even improves the SNR in either long or short loops (because of lower FEXT coupling in short loops).

  20. Downstream Power Back-off • VDSL signal may interfere with other service on the same bundle of Lines • DPBO can reduce performance degradation bychanging PSD Level

  21. xDSL Error Correction (QoS)

  22. Error Correction (QoS) • Interleave and Reed-Solomon (FEC) • BitErrorRate 10-7, 0dB SNR • Max 1 bitfeil per 10 millioner bits • 20Mbps = ? • NoiseMargin • 6dB SNR = BER 10-24 • Reallife ≤ BER 10-9 • Reed-Solomon • Sender redundant data • Single bit error correction • Interleaving  • Økt latency • Kun maks, ingen minimum • Beskyttelsen er avhengig av linkspeed

  23. Error Correction (QoS) • INP (Impulse Noise Protection) • Bit rate = Number_of_tones_per_symbol * Bits_per_tone * Symbolrate • ADSL example: 512*15*4000 = 30,7 Mbps is the theoretically maximum bitrate for up/downstream combined • 1 Symbol = All tones • 4000 Symbols per second • 1 Symbol = 250 µs (30a = 125 µs)

  24. Error Correction (QoS) • Inp • Gir minimumsbeskyttelse

  25. Error Correction (QoS) • INP • Med D0

  26. Error Correction (QoS) • INP 2 (symbols) og 8 ms Interleave = 500µs beskyttelse • Får du mer enn 500µs Impulse Noise så kan du miste 8ms med data

  27. Error Correction (QoS) • BitErrorRate 10-7, 0dB SNR • Max 1 bitfeil per 10 millioner bits • 5 Mbps = ? • NoiseMargin • 6dB SNR = BER 10-24 • Reallife ≤ BER 10-9 • Reed-Solomon • Sender redundant data • Single bit error correction • Interleaving • Økt latency • Kun maks, ingen minimum • Beskyttelsen er avhengig av link-speed • INP * Gir minimumsbeskyttelse * Opererer uavhengig av link-speed * Broadcom: ”…field data demonstrating that at least 5 ms [INP] are required.”

  28. Error Correction (QoS) • PhyR (Fire) • Broadcom propritær terminologi

  29. Error Correction (QoS) • PhyR • Selv om det blir bedt om en retransmit så sendes den korrupte dataen videre innover så RS kan forsøke å reparere pakka • Kun overhead ved feil (+ RS), ingen Interleaving • Høyere INP uten ”penalties” (linkspeed/latency) • BER 10-10 på 0 dB SNR • Enkel provisjonering • Ingen vedlikehold • Håndteres av DSL-chippen, ikke noe på høyere layer

  30. PhyR

  31. PhyR The INP value starts from 17.0 (DMT Symbol) when PhyR is enabled.

  32. VDSL Port setup (-> 31.10.10)

  33. VDSL2 port setup • Profile 12b, No US0, B8-9 mask, UPBO

  34. VDSL Port setup (01.11.10 ->)

  35. VDSL2 port setup

  36. VDSL2 port setup

  37. VDSL2 port setup • Profile 17a, US0 (120 kHz – 276 kHz), UPBO, Mask: B8-2, B8-3, B8-6, B8-10, B8-12, B8-15

  38. 10.0.0.x/24 Lab – VDSL2 link ihht Telenor OA (US0/NUS0) 10.0.0.1/255.255.255.0 VDSL2 CPE

  39. VDSL2 port setup • Hands on, port statistics - linedata • Profile 17a, US0 (120 kHz – 276 kHz), UPBO, Mask: B8-2 (), B8-3 (), B8-6 (), B8-10 (), B8-12(), B8-15 () (tone x 4,3125 = kHz)

  40. ZyXEL Bonding

  41. Why do we need G.bond? • Offers higher rate by bundling several copper pairs • Supports bandwidth hungry services • Triple play • Squeezing out the last bit of bandwidth out of copper infrastructure, rather than rolling out new fiber.

  42. ITU-T recommendations • ITU-T G.998 series of recommendations (known as G.bond), include three parts: • G.998.1 - ATM-based xDSL bonding • G.998.2 - Ethernet-based xDSL bonding (EFM – 802.3ah) • G.998.3 - Time-Division Inverse Multiplexing (TDIM). • Not include in this course

  43. ZyXEL ATM Bonding - Introduction

  44. ATM-based xDSL bonding objectives • Dynamic removal and restoration of pairs without human intervention. • Supports disparate data rates amongst its pairs, up to a ratio of 4-to-1 (fastest to slowest). • Allow bonding of 2-32 pairs. • Permit bonding of randomly assigned ports on an access node. • The protocol shall be PHY independent. • It shall incur a maximum overall one-way bonding delay of 2 ms.

  45. Main steps of ATM-based bonding Incoming Data Segmentation Segmented Data Segmented Data Segmented Data Inserting Sequence ID … SID Segmented Data SID Segmented Data SID Segmented Data DSL Link 1 DSL Link 2 … DSL Link n Transmission … Reassembly Reconstructed Data Stream

  46. Mode of Operation (1/3) • 1. Sequencing payload of traffic • 8-bit sequence Index (SID) • 12-bit sequence Index (SID)

  47. Mode of Operation (2/3) • 2. Bonding Group ID (GID) • The bonding group has a unique GID, assigned by CO ME. • CPE will learn the GID during initialization. • ME: Management Entity Standard ATM Cell Format

  48. Mode of Operation (3/3) • 3. Autonomous Status Message (ASMs) • ASMs with unique GIDs are used to communicate the status of the links in the group. • Used both for startup and maintenance group links.

  49. ASM Message Format (1/2)

  50. ASM Message Format (2/2) 0 1 30 31 62 63 … … Link ‘0’ Link ‘16’ Link ‘31’

More Related