1 / 50

Modern Laser for High Energy Particle Acceleration: A long term view

Modern Laser for High Energy Particle Acceleration: A long term view. Gérard Mourou Institut de Lumière Extreme EUROnnac CERN 3 May 2011. Contents. Low Luminosity Paradigm Single shot PeV High-Energy particle Laser Low Rep. Rate High Energy Laser MJ, Low Average power. 100W

iman
Télécharger la présentation

Modern Laser for High Energy Particle Acceleration: A long term view

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Modern Laser for High Energy Particle Acceleration:A long term view Gérard Mourou Institut de Lumière Extreme EUROnnac CERN 3 May 2011

  2. Contents • Low Luminosity Paradigm • Single shot PeV High-Energy particle • Laser Low Rep. Rate High Energy Laser MJ, Low Average power. 100W • High Luminosity Paradigm(collider) • Recurrent Laser 15 kHz, High average Power 500MW • Search for the Efficient Laser Driver • Thin disk laser • Fiber laser (CAN Coherent Amplification Net work) • ICAN(International Coherent Amplification Network)

  3. Towards the PeV single ShotUsing MJ laser At 1joule per GeV, a laser Megajoule laser after compression to the ps Level could produce PeV particles. Physics: Texture of Vacuum and testing General Relativity

  4. High Luminosity ParadigmeCollider Application Recurrent Laser, 15 kHz and GW Average Power

  5. 100J/10Hz Luli Energy vs. Rep. Rate 0.5GW , 5GeV Collider ( 2x 500Stages) Wahoo!! 1 Stage, .5MW, 32J, 17kHz 10 M J LMJ/NIF 1 M J 1 kW de puissance moyenne 100 k J LIL 10 k J 1 k J LULI 2000 pico 2000 150J/.1Hz Jena LULI Energie par impulsion 100 J 1 W de puissance moyenne 10 J LULI 100TW 1 J Commercial 0,1 J 104 -5 -4 -3 -2 -1 10 2 10 10 10 10 10 1 10 Taux de répetition (Hz)

  6. Here the efficiency is at a premium! 1 GW consumption means an electric bill of a 1B€/year 1% difference in efficiency cost 10-20M€/year

  7. Search for High Average Power and Efficient Driver Laser Thin Disk Fiber Amplifier

  8. Thin Disk laser Driver

  9. Fiber Laser Driver

  10. Fiber vs. Bulk lasers • High Gain fiber amplifiers allow ~ 50% total plug-to-optical output efficiency reachable • Single mode fiber amplifier have reached 10kW optical power. • large bandwidth (100fs) • High rep. rate 10kHz>1/tf, highly desirable for diode stability, lifetime and system noise • excellent beam quality • efficient, diode-pumped operation Pigtail pumping vs stacks • high single pass gain • They can be mass-produced at low cost.

  11. Fiber laser Pigtailed pumped instead of stack laser pumped Diode pump inner cladding active core refractive index profile laser radiation Øco Øcl Single mode Øco~10 outer cladding n Pigtailed

  12. The CAN concept, opening to the scalability  Laser concept based on a diode-pumped fiber network of femtosecond pulses  Device possibly based on standard, cheap and reliable telecom components • - Laser architecture allowing high peak / high average powers are desired for future societal application • Coherent combining demonstrated for CW regime, few experiments in ns regime, no results yet in fs regime • Coherent combining required for some application not for all of them Bridgelab Symposium for Laser Acceleration – Paris, January 14, 2011 – Matthieu Somekh

  13. 500x1.0 MW Fiber bundles1mJ/fiber x 15kHz=15W1MW/15W/fiber= 70 103 Fibers/bundles They will be all coherently phased. Electron/positron beam Transport fibers ~1mm ~70cm Length of a fiber ~2m Total fiber length~ 5 104km

  14. The CAN Project:(a ANR-National Project)

  15. Insertion des fibres 64-Fiber Mock-up • Insertion des fibres • Insertion des 64 fibres, alignement PM (° près), collage • Polissage collectif de la surface de sortie des fibres • Composant intégré pour le maintien des fibres

  16. Matrice de microlentilles • Caractéristiques F = 5,7mm Réalisation par lithographie • Mesure du pas 20µm ± 1µm 1500 µm ± 1µm

  17. Matrice de microlentilles • Mesure du profil Profil (mm) --- Sphère théorique --- Profil mesuré 0 -5 -10 Comparaison avec la sphère théorique λ / 10 sur 80% de l’ouverture λ / 3 sur la totalité 0,0 0,5 1,0 1,5 (mm)

  18. Phase control

  19. Ampli 1 W 1 vers 16 PM 1 vers 16 Ampli 1 W Ampli 1 W PM Ampli 1 W DL 1 vers 16 PM Contrôleur de polar l=1,5µm PM 1 vers 16 Ampli 1 W PM Génération des 64 faisceaux • Génération de 64 faisceaux fibrés

  20. Insertion des fibres • Toron de 64 fibres réalisé

  21. Wave-front Measurement

  22. Généralités sur l’IDQL • IDQL: Interféromètre à Décalage Quadri-Latéral • Technique d’analyse de front d’onde auto-référencée • Principe: analyse de l’interférence du front d’onde avec lui même après duplication et décalage latéral k1,1 s k-1,1 s k1,-1 s zd k-1,-1 s z Aberration sphérique • Utilisations usuelles: Métrologie optique, caractérisation laser, optique adaptative sur des surfaces continues • Fonctionne également sur des surfaces segmentées (marches de phase)

  23. Expérimentalement • Avec notre analyseur expérimental: ajout d’une lentille d’imagerie • Nécessité d’adapter la taille de la matrice de faisceaux (grandissement g) • Nécessité d’éliminer l’effet de la divergence des faisceaux gaussiens au niveau du détecteur (conservation de la lacunarité) d di Caméra Réseau Lentille Condition:

  24. Analyse de l’interférogramme • Jeux de franges de même pas dans les deux sens • Déphasage entre deux fibres adjacentes codé dans le déplacement des franges • Analyse du déplacement relatif des franges • Sinusoïdes  Démodulation synchrone spatiale sur toute la figure • Récupération des 7x8 8x7 valeurs de différences • Reconstruction de la cartographie de phase matriciellement Interférogramme expérimental Gradient X Gradient Y

  25. 64 CW fibers have been phased(Private com. A. Brignon Thales)

  26. Phase Locking in the Femtosecond Regime

  27. CAN recent results / phase locking technique In the femto second Combining efficiency > 90% L. Daniault, M. Hanna, L. Lombard, D. Goular, P. Bourdon, F. Druon, P. Georges “Coherent combining of two femtosecond fiber chirped pulse amplifiers“ Oral : Advanced Solid State Photonics, ASSP 2011, Istanbul, Turkey  (February 13-16 2011) Accepted: Optics Letters, L. Daniault et al, « Coherent beam combining of two femtosecond fiber chirped pulse amplifiers » Bridgelab Symposium for Laser Acceleration – Paris, January 14, 2011 – Matthieu Somekh

  28. CAN recent results / phase locking technique (2) Spectra 4.3 nm FWHM Autocorrelations 325 fs pulsewidth Bridgelab Symposium for Laser Acceleration – Paris, January 14, 2011 – Matthieu Somekh

  29. Diode cost Stacks Laser Diode 20000 hours Pigtailed Diode >50000 hours

  30. Fiber pigtailed single emitters VS stacks Cost in € / Watt 2D Stacks Fibered emitters 3.5 B€ in laser diodes

  31. Fiber pigtailed single emitters VS stacks Cost in € / Watt / year Stacks 2D Emetteurs fibrés Assump.: - 1 year = 200 days ; 24 hours per day - lifetime: stacks = 20.000 h ; fiber pigtailed single emitters = 50.000 h

  32. The International Coherent Amplification Initiative CERN Different communities joining their efforts towards the collaborative evaluation of the fiber CAN concept as one of the possible solutions for the next laser-based driver generation: • Laser & fibre communities • High energy physics community  Final goal : definition, conception, design and realisation of such a laser Bridgelab Symposium for Laser Acceleration – Paris, January 14, 2011 – Matthieu Somekh

  33. A first targeted step of 2 years • 1 proposal submitted to Brussels (Type of funding scheme: Coordination and support actions (Supporting)) • 18 participants from laser, fibre and high energy physics communities already behind the ICAN project • To be organized in 2012-2013 : • Conferences • Workshops The proposal has been Favorably Rated by the EU Bridgelab Symposium for Laser Acceleration – Paris, January 14, 2011 – Matthieu Somekh

  34. Conclusions Low luminosity Paradigm: PeV particles, single shot could be produced by laser acceleration. High Luminosity Paradigme: Preliminary studies with CAN have demonstrated that the possibility to build an efficient laser driver for a GW, TeV, collider seems at this point possible . The ICAN program in 18 months hopefully will help us to confirm this opinion

  35. Laser Acceleration-Telecom Cycle Coherent Amplifying Network+ Laser Wake Field WWW Tim Berners-Lee Optical Fiber Charles Kao

  36. Acknowledgements to our Fiber Accelerator Team • Toshiki Tajima, ILE, MPQ, Garching: Laser acceleration • Jean-Pierre Koutchouk, CERN: Accelerator • Almantas Galvanauskas U. Michigan: Fiber amplification • Johan Nilsson, ORC, U. Southampton: fiber amplification, fabrication: • Marc Hanna: Institut d’ optique: Fibers Phasing • Vincent Michau ONERA: Fiber Phasing • Matthieu Somekh Ecole Polytechnique: Diode laser • Catherine Sarrazin: Adminsitrative Assistant Institut Lumière Extrême

  37. The Moral of this talk HighPeak Power High Average Power Telecom

  38. Fibre laser strengths & limitations   - Initial & running cost - Reliability / Robustness - Maintenance - Footprint - Frequency - Beam Quality - Scalability of the energy in a single fibre in short pulse laser operation Bridgelab Symposium for Laser Acceleration – Paris, January 14, 2011 – Matthieu Somekh

  39. Can technology obey Moore’s Law?Yes for Patterned Structures. Bob Beyers’dictum

More Related