1 / 1

Cavity-enhanced dipole forces for dark-field seeking atoms and molecules

L 20. L 00. Cavity-enhanced dipole forces for dark-field seeking atoms and molecules. David McGloin, Kishan Dholakia. Tim Freegarde. Dipartimento di Fisica, Università di Trento 38050 Povo (TN), Italy. J F Allen Physics Research Laboratories, University of St Andrews,

ion
Télécharger la présentation

Cavity-enhanced dipole forces for dark-field seeking atoms and molecules

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. L20 L00 Cavity-enhanced dipole forces for dark-field seeking atoms and molecules David McGloin, Kishan Dholakia Tim Freegarde Dipartimento di Fisica, Università di Trento 38050 Povo (TN), Italy J F Allen Physics Research Laboratories, University of St Andrews, Fife KY16 9SS, Scotland OPTICAL BOTTLE BEAM Dipole force traps for dark-field seeking states of atoms and molecules require regions of low intensity that are completely surrounded by a bright optical field. Confocal cavities allow the resonant enhancement of these interesting transverse mode superpositions, and put deep off-resonant dark-field seeking dipole traps within reach of low-power diode lasers. COAXIAL RING ARRAY • Freegarde & Dholakia, Phys Rev A, in press • see Arlt & Padgett, Opt. Lett. 25 (2000) 191-193 • Freegarde & Dholakia, Opt. Commun. 201 99 (2002) • see Zemánek & Foot, Opt. Commun. 146 119 (1998) • use single Gaussian beam of waist w1 larger than that of the fundamental cavity mode (w0 = aw1) • counterpropagating beam smaller by same factor (w2 = aw0) • beams of equal power cancel where nodal surfaces intersect • Laguerre-Gaussian superposition: • cancellation at cavity centre • constructive interference elsewhere thanks to different radial dependences and Gouy shifts OPTICAL DIPOLE FORCE ( ) Jdipole traps eliminate the magnetic fields needed for MOTs1 • return beam larger than forward beam to avoid nodal surfaces æ ö w z 1 1 ( ) ç ÷ 2 = - r z ln 1 ( ) ç ÷ ( ) ( ) 0 2 2 FAR OFF RESONANCE2-5 Jbroadband interaction and Jminimal scattering, hence suitable for spectrally complex atoms and molecules Lintense laser beam needed to compensate for interaction weakness BLUE-DETUNED6-10 Jdark-field seeking to minimize residual perturbations Lneed isolated islands of low intensity for closed trapping region RESONANT CAVITIES11-13 Jcan greatly increase circulating intensity, as optical absorption is low Loptical field not a single cavity mode w z w z w z è ø • with  = 0.5, the maximum modulation depth is 7%. 2 2 1 • intensity minima form a series of coaxial rings spaced by l/2 • traps deepest when a = 0.492 • r0 ~ 0.7 w0(z) COMPOSITION • five component superposition optimizes trap depth for given radius: towards high intensity • high = + - - - 0 . 691 0 . 332 0 . 165 0 . 332 0 . 525 E L L L L L 00 10 20 30 40 towards low intensity • trap intensity nearly half that at centre of simple Gaussian beam with same waist and power as forward beam • 99.99% mirrors with 100 mW at 780 nm would give 5 K trap depth for 85Rb at 0.2 nm detuning • low • with a = 0.492, 99% of power in first 5 modes CONFOCAL CAVITIES L/R2 • transverse mode degeneracy allows enhancement of mode superpositions for complex field geometries 1 confocal Intensity distribution within a perfectly confocal resonator. Above left: mean intensity shown for central 40% of the cavity. The solid lines show where the forward beam has fallen to e-2 of its on-axis intensity. Above: viewed on a wavelength scale around the cavity centre, the modulation due to interference between the counter-propagating beams is apparent. Here, l = 100 mm,  = 780nm,  = 2. Left: depth of modulation due to interference between forward and return beams. Black=0, white=100%. 0 1 L/R1 Intensity distribution around the centre of a confocal cavity.Dashed and solid lines indicate the nodal and antinodal planes; the dotted line shows where the lowest part of the trap wall is maximum. Logarithmic contours (four per decade) refer to the peak intensity on axis. l = 100 mm, l = 780 nm, a = 0.492. Intensity distribution when the cavity mirrors are 0.1 mm from their confocal separation (Dl/l = 0.001), for r2 = 0.99, t2 = 0.01. The nodal surfaces, shown dashed, are now curved, reflecting the increase in Gouy phase with mode number. Central and trapping intensities are reduced by about a third. • three different views of physics: RAY OPTICS • 2 round trips before repeating • inverted image after 1 round trip • returning beam  forward beam Applications: • trapping of spectrally complex atoms and molecules • investigation of vortices in quantum degenerate gases14 • coupling between adjacent microtraps15 • cooling via coupling to cavity radiation field16-18 R2 R1 GAUSSIAN BEAMS HALF TRIP ROUND TRIP even odd even CAVITY MODES Cartesian i + j Hermite-Gaussian • half modes simultaneously resonant • (anti-)symmetric image = • superposition of even(odd) modes cylindrical 2p + |m| Laguerre-Gaussian Amplitudes ap0 of mode components forming the complete five-component optical bottle beam with =2. LAGUERRE-GAUSSIAN BEAMS MECHANICAL AMPLIFIER • the Laguerre-Gaussian cavity modes are solutions to the paraxial wave equation in cylindrical polar coordinates, col intensity • moving the mirrors from their confocal separation causes an amplified displacement of the trap centre • amplification by same factor as intensity enhancement ( ) ( ) ( ) m æ ö - + + æ ö æ ö 1 exp i 2 p m 1 tan z z 2 2 2 4 p ! 2 r 2 r r i kr ( ) trap centre intensity ç ÷ ç ÷ ç ÷ J = - - + J - R m r , z , L exp i m i kz L ( ) ç ÷ ç ÷ ( ) ( ) ( ) ç ÷ ( ) ( ) ( ) pm p + d p + 2 2 2 1 p m ! w z 2 R z w z w z w z è ø è ø è ø 0 m trap centre position ( ) 2 2 p z w 0 ( ) ( ) ( ) ( ) ( ) 2 where are Laguerre polynomials and , , . = + m = + = L x w z w 0 1 z z R R z z z p R R l z • an arbitrary field may be written as a superposition Variation of trap col (dotted) and trap centre (dashed) intensities – in units of the well depth at zero mirror displacement – and trap centre position (right hand scale) as mirrors are displaced from their confocal separation. ( ) ( ) å e = r , z a L r , z ( ) - + w w w w pm pm p s ! j = + = j j 0 1 1 0 sin s 1 p pm a cos sin + ps 0 w w w w p ! s ! ( 1 ) L • Laguerre-Gaussian beams , of non-resonant waist radius w1, correspond to superpositions of resonant L-G beams with the same azimuthal index m = s. The first three coefficients are: 0 1 1 0 qm ( ) • amplification mechanism may be compared to Vernier scale between Gouy phases of different Laguerre-Gaussian components [ ] + p s ! ( ) + - = j j j - + j s 1 p 1 2 2 a cos sin p cos s 1 sin ( ) ps 1 + p ! s 1 ! a ( ) pmq [ ] [ ] + { } p s ! ( ) ( ) + - = j j j - + j j - + j - j s 1 p 2 2 2 2 2 2 a cos sin p cos s 1 sin p cos s 2 sin p cos ( ) ps 2 + 2 ! p ! s 2 ! SINGLE TOROID LARGE PERIOD STANDING WAVE • REFERENCES • 1 R. Grimm, M. Weidemüller, Y. B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42 (2000) 95-170 • 2 S. L. Rolston, C. Gerz, K. Helmerson, P. S. Jessen, P. D. Lett, W. D. Phillips, R. J. Spreeuw, C. I. Westbrook, Proc. SPIE 1726 (1992) 205-211 • 3 J. D. Miller, R. A. Cline, D. J. Heinzen, Phys. Rev. A 47 (1993) R4567-4570 • 4 M. D. Barrett, J. A. Sauer, M. S. Chapman, Phys. Rev. Lett. 87 (2001) 010404 • 5 T. Takekoshi, B. M. Patterson, R. J. Knize, Phys. Rev. Lett. 81 (1998) 5105-5108 • 6 N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, S. Chu, Phys. Rev. Lett. 74 (1995) 1311-1314 • 7 P. Rudy, R. Ejnisman, A. Rahman, S. Lee, N. P. Bigelow, Optics Express 8 (2001) 159-165 • 8 S. A. Webster, G. Hechenblaikner, S. A. Hopkins, J. Arlt, C. J. Foot, J. Phys. B 33 (2000) 4149-4155 • 9 T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimuzu, H. Sasada, Phys. Rev. Lett. 78 (1997) 4713-4716 • R. Ozeri, L. Khaykovich, N. Davidson, Phys. Rev. A 59 (1999) R1759-1753 • 11 J. Ye, D. W. Vernooy, H. J. Kimble, Phys. Rev. Lett. 83 (1999) 4987-4990 • 12 S. Jochim, Th. Elsässer, A. Mosk, M. Weidemüller, R. Grimm, Int. Conf. on At. Phys., Firenze, Italy, poster G.11 (2000) • 13 P. W. H. Pinkse, T. Fischer, P. Maunz, T. Puppe, G. Rempe, J. Mod. Opt. 47 (2000) 2769-2787 • 14 E. M. Wright, J. Arlt, K. Dholakia, Phys. Rev. A 63 (2000) 013608 • 15 P. Münstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, G. Rempe, Phys. Rev. Lett. 84 (2000) 4068-4071 • 16 T. Zaugg, M. Wilkens, P. Meystre, G. Lenz, Opt. Commun. 97 (1993) 189-193 • 17 M. Gangl, H. Ritsch, Phys. Rev. A 61 (1999) 011402 • 18 V. Vuletic, S. Chu, Phys. Rev. Lett. 84 (2000) 3787-3790 • in preparation • in preparation • see D M Giltner et al, Opt. Commun. 107 227 (1994) • pattern period = l/sinq • 2-D Hermite-Gaussian analysis; astigmatism renders out-of-plane direction non-confocal • high Q: all (odd) even modes • give (anti-)symmetric • field pattern • finite Q: half-axial modes • contribute • dissimilar forward/return waist sizes eliminate nodal planes • magnetic field free toroidal trap for study of vortices in condensates14

More Related