1 / 229

IPv6 Addressing: Learn It Or “I was hoping to retire before I had to learn IPv6.” Rick Graziani

IPv6 Addressing: Learn It Or “I was hoping to retire before I had to learn IPv6.” Rick Graziani CS/CIS Instructor Cabrillo College. Topics (1/3): IPv6 Address Notation, Structure and Subnetting. 2001:0DB8:AAAA:1111:0000:0000:0000:0100/64

jadyn
Télécharger la présentation

IPv6 Addressing: Learn It Or “I was hoping to retire before I had to learn IPv6.” Rick Graziani

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. IPv6 Addressing: Learn It Or “I was hoping to retire before I had to learn IPv6.” Rick Graziani CS/CIS Instructor Cabrillo College

  2. Topics (1/3): IPv6 Address Notation, Structure and Subnetting 2001:0DB8:AAAA:1111:0000:0000:0000:0100/64 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits

  3. Topics (2/3): IPv6 Address Types IPv6 Addressing Unicast Multicast Anycast Assigned Solicited Node FF00::/8 FF02::1:FF00:0000/104 Embedded IPv4 Unspecified Unique Local Global Unicast Link-Local Loopback FC00::/7 FDFF::/7 2000::/3 3FFF::/3 ::1/128 ::/128 ::/80 FE80::/10 FEBF::/10 Note: There are no broadcast addresses in IPv6

  4. Topics (3/3): Global Unicast Address Configurations Global Unicast Manual Dynamic IPv6 Unnumbered Stateless Autoconfiguration IPv6 Address DHCPv6 Static EUI-64

  5. IPv6 Address Notation, Structure and Subnetting

  6. IPv6 Address Notation • IPv6 addresses are 128-bit addresses represented in: One Hex digit = 4 bits 2001:0DB8:AAAA:1111:0000:0000:0000:0100/64

  7. IPv6 Address Notation • IPv6 addresses are 128-bit addresses represented in: • Eight 16-bit segments or “hextets” (not a formal term) One Hex digit = 4 bits 2001:0DB8:AAAA:1111:0000:0000:0000:0100/64 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100 1 2 3 4 5 6 7 8 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits

  8. IPv6 Address Notation • IPv6 addresses are 128-bit addresses represented in: • Eight 16-bit segments or “hextets” (not a formal term) • Hexadecimal (non-case sensitive) between 0000 and FFFF • Separated by colons One Hex digit = 4 bits 2001:0DB8:AAAA:1111:0000:0000:0000:0100/64 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100 1 2 3 4 5 6 7 8 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits

  9. 2001:0DB8:AAAA:1111:0000:0000:0000:0100/64 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100 • How many addresses does 128 bits give us? 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits

  10. 2001:0DB8:AAAA:1111:0000:0000:0000:0100/64 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100 • How many addresses does 128 bits give us? • 340 undecillionaddesses or … 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits

  11. 2001:0DB8:AAAA:1111:0000:0000:0000:0100/64 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100 • How many addresses does 128 bits give us? • 340 undecillionaddesses or … • 340 trillion trillion trillion addresses or … 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits

  12. 2001:0DB8:AAAA:1111:0000:0000:0000:0100/64 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100 • How many addresses does 128 bits give us? • 340 undecillionaddesses or … • 340 trillion trillion trillion addresses or … • “IPv6 could provide each and every square micrometer of the earth’s surface with 5,000 unique addresses. Micrometer = 0.001 mm or 0.000039 inches” or…. 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits

  13. 2001:0DB8:AAAA:1111:0000:0000:0000:0100/64 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100 • How many addresses does 128 bits give us? • 340 undecillionaddesses or … • 340 trillion trillion trillion addresses or … • “IPv6 could provide each and every square micrometer of the earth’s surface with 5,000 unique addresses. Micrometer = 0.001 mm or 0.000039 inches” or…. • “A string of soccer balls would wrap around our universe 200 billion times!” … in other words … 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits

  14. 2001:0DB8:AAAA:1111:0000:0000:0000:0100/64 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100 • How many addresses does 128 bits give us? • 340 undecillionaddesses or … • 340 trillion trillion trillion addresses or … • “IPv6 could provide each and every square micrometer of the earth’s surface with 5,000 unique addresses. Micrometer = 0.001 mm or 0.000039 inches” or…. • “A string of soccer balls would wrap around our universe 200 billion times!” … in other words … • I won’t be the one presenting IPv7 at any Cisco Academy Conference. 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits

  15. Rule 1: Leading 0’s • Two rules for reducing the size of written IPv6 addresses.

  16. Rule 1: Leading 0’s • Two rules for reducing the size of written IPv6 addresses. • The first rule is:Leading zeroes in any 16-bit segment do not have to be written. 3ffe : 0404 : 0001 : 1000 : 0000 : 0000 : 0ef0 : bc00 3ffe : 0000 : 010d : 000a : 00dd : c000 : e000 : 0001 ff02 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0500

  17. Rule 1: Leading 0’s • Two rules for reducing the size of written IPv6 addresses. • The first rule is:Leading zeroes in any 16-bit segment do not have to be written. 3ffe : 0404 : 0001 : 1000 : 0000 : 0000 : 0ef0 : bc00 3ffe : 404 : 1 : 1000 : 0 : 0 : ef0 : bc00 3ffe : 0000 : 010d : 000a : 00dd : c000 : e000 : 0001 ff02 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0500

  18. Rule 1: Leading 0’s • Two rules for reducing the size of written IPv6 addresses. • The first rule is:Leading zeroes in any 16-bit segment do not have to be written. 3ffe : 0404 : 0001 : 1000 : 0000 : 0000 : 0ef0 : bc00 3ffe : 404 : 1 : 1000 : 0 : 0 : ef0 : bc00 3ffe : 0000 : 010d : 000a : 00dd : c000 : e000 : 0001 3ffe : 0 : 10d : a : dd : c000 : e000 : 1 ff02 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0500

  19. Rule 1: Leading 0’s • Two rules for reducing the size of written IPv6 addresses. • The first rule is:Leading zeroes in any 16-bit segment do not have to be written. 3ffe : 0404 : 0001 : 1000 : 0000 : 0000 : 0ef0 : bc00 3ffe : 404 : 1 : 1000 : 0 : 0 : ef0 : bc00 3ffe : 0000 : 010d : 000a : 00dd : c000 : e000 : 0001 3ffe : 0 : 10d : a : dd : c000 : e000 : 1 ff02 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0500 ff02 : 0 : 0 : 0 : 0 : 0 : 0 : 500

  20. Rule 2: Double colon :: equals 0000…0000 • The second rule can reduce this address even further:

  21. Rule 2: Double colon :: equals 0000…0000 • The second rule can reduce this address even further: • Any single, contiguous string of one or more 16-bit segments consisting of all zeroes can be represented with a double colon. ff02 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0500

  22. Rule 2: Double colon :: equals 0000…0000 • The second rule can reduce this address even further: • Any single, contiguous string of one or more 16-bit segments consisting of all zeroes can be represented with a double colon. ff02 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0500 ff02 : : 500 Second Rule First Rule

  23. Rule 2: Double colon :: equals 0000…0000 • The second rule can reduce this address even further: • Any single, contiguous string of one or more 16-bit segments consisting of all zeroes can be represented with a double colon. ff02 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0500 ff02 : : 500 ff02::500 Second Rule First Rule

  24. Rule 2: Double colon :: equals 0000…0000 • Only a single contiguous string of all-zero segments can be represented with a double colon. 2001 : 0d02 : 0000 : 0000 : 0014 : 0000 : 0000 : 0095

  25. Rule 2: Double colon :: equals 0000…0000 • Only a single contiguous string of all-zero segments can be represented with a double colon. • Both of these are correct… 2001 : 0d02 : 0000 : 0000 : 0014 : 0000 : 0000 : 0095 2001 : d02 :: 14 : 0 : 0 : 95 OR 2001 : d02 : 0 : 0 : 14 :: 95

  26. Rule 2: Double colon :: equals 0000…0000 • Using the double colon more than once in an IPv6 address can create ambiguity because of the ambiguity in the number of 0’s. 2001:d02::14::95

  27. Rule 2: Double colon :: equals 0000…0000 • Using the double colon more than once in an IPv6 address can create ambiguity because of the ambiguity in the number of 0’s. 2001:d02::14::95 2001:0d02:0000:0000:0014:0000:0000:0095 2001:0d02:0000:0000:0000:0014:0000:0095 2001:0d02:0000:0014:0000:0000:0000:0095

  28. Network Prefixes • IPv4, the prefix—the network portion of the address—can be identified by a dotted decimal netmask or bitcount. 255.255.255.0 or /24

  29. Network Prefixes • IPv4, the prefix—the network portion of the address—can be identified by a dotted decimal netmask or bitcount. 255.255.255.0 or /24 • IPv6 prefixes are always identified by bitcount (prefix length).

  30. Network Prefixes • IPv4, the prefix—the network portion of the address—can be identified by a dotted decimal netmask or bitcount. 255.255.255.0 or /24 • IPv6 prefixes are always identified by bitcount (prefix length). • Prefix length notation: 3ffe:1944:100:a::/64

  31. Network Prefixes • IPv4, the prefix—the network portion of the address—can be identified by a dotted decimal netmask or bitcount. 255.255.255.0 or /24 • IPv6 prefixes are always identified by bitcount (prefix length). • Prefix length notation: 3ffe:1944:100:a::/64 16 32 48 64 bits

  32. IPv6 Address Types

  33. IPv6 Address Types: Starting with Global Unicast IPv6 Addressing Unicast Multicast Anycast Assigned Solicited Node FF00::/8 FF02::1:FF00:0000/104 Embedded IPv4 Unspecified Unique Local Global Unicast Link-Local Loopback FC00::/7 FDFF::/7 2000::/3 3FFF::/3 ::1/128 ::/128 ::/80 FE80::/10 FEBF::/10 Note: There are no broadcast addresses in IPv6

  34. Structure of a Global Unicast Address m bits n bits 128-n-m bits Global Routing Prefix Subnet ID Interface ID • Globalunicast addresses are similar to IPv4 addresses.

  35. Structure of a Global Unicast Address m bits n bits 128-n-m bits Global Routing Prefix Subnet ID Interface ID • Globalunicast addresses are similar to IPv4 addresses. • Routable • Unique

  36. Structure of a Global Unicast Address m bits n bits 128-n-m bits Global Routing Prefix Subnet ID Interface ID Range 2000::/3 to 3FFF::/3 (4th bit can be a 0 or a 1) 001 • Globalunicast addresses are similar to IPv4 addresses. • Routable • Unique

  37. Structure of a Global Unicast Address m bits n bits 128-n-m bits Global Routing Prefix Subnet ID Interface ID Range 2000::/3 to 3FFF::/3 (4th bit can be a 0 or a 1) 001 IANA’s allocation of IPv6 address space in 1/8th sections • Globalunicast addresses are similar to IPv4 addresses. • Routable • Unique

  38. Global Unicast Addresses and the 3-1-4 rule IPv4 Unicast Address Network portion Subnet portion Host portion 32 bits

  39. Global Unicast Addresses and the 3-1-4 rule IPv4 Unicast Address /? Network portion Subnet portion Host portion 32 bits

  40. Global Unicast Addresses and the 3-1-4 rule IPv4 Unicast Address /? Network portion Subnet portion Host portion 32 bits IPv6 Global Unicast Address Interface ID Global Routing Prefix 128 bits

  41. Global Unicast Addresses and the 3-1-4 rule IPv4 Unicast Address /? Network portion Subnet portion Host portion 32 bits IPv6 Global Unicast Address /64 Interface ID Global Routing Prefix 128 bits * 64-bit Interface ID gives us 18 quintillion (18,446,744,073,709,551,616) devices/subnet. * Supports 48bit and 64-bit MAC addresses as the Interface ID (coming).

  42. Global Unicast Addresses and the 3-1-4 rule IPv4 Unicast Address /? Network portion Subnet portion Host portion 32 bits IPv6 Global Unicast Address /48 /64 Fixed 16-bit Subnet ID Interface ID Global Routing Prefix 128 bits * 64-bit Interface ID gives us 18 quintillion (18,446,744,073,709,551,616) devices/subnet. * 16-bit Subnet ID gives us 65,536 subnets. (Yes, you can use the all 0’s and all 1’s.) 

  43. Global Unicast Addresses and the 3-1-4 rule 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100

  44. Global Unicast Addresses and the 3-1-4 rule 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100

  45. Global Unicast Addresses and the 3-1-4 rule /48 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits Global Routing Prefix 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100

  46. Global Unicast Addresses and the 3-1-4 rule /48 /64 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits Subnet ID Global Routing Prefix 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100

  47. Global Unicast Addresses and the 3-1-4 rule /48 /64 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits Subnet ID Global Routing Prefix Interface ID 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100

  48. Global Unicast Addresses and the 3-1-4 rule /48 /64 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits Subnet ID Global Routing Prefix Interface ID 3 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100

  49. Global Unicast Addresses and the 3-1-4 rule /48 /64 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits Subnet ID Global Routing Prefix Interface ID 3 1 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100

  50. Global Unicast Addresses and the 3-1-4 rule /48 /64 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits Subnet ID Global Routing Prefix Interface ID 3 1 4 2001 : 0DB8 : AAAA : 1111 : 0000 : 0000 : 0000 : 0100

More Related