1 / 37

Beam Collision Feedbacks for future Lepton Colliders

Beam Collision Feedbacks for future Lepton Colliders. Philip Burrows John Adams Institute Oxford University. Outline. Introduction and system concept ILC design status CLIC design status FONT prototype systems performance Outstanding technical issues Summary .

jennis
Télécharger la présentation

Beam Collision Feedbacks for future Lepton Colliders

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Beam Collision Feedbacks for future Lepton Colliders Philip Burrows John Adams Institute Oxford University P.N. Burrows ICHEP12 Melbourne 7/7/12

  2. Outline • Introduction and system concept • ILC design status • CLIC design status • FONT prototype systems performance • Outstanding technical issues • Summary P.N. Burrows ICHEP12 Melbourne 7/7/12

  3. Compact Linear Collider (CLIC) Drive Beam Generation Complex Main Beam Generation Complex 1.5 TeV / beam P.N. Burrows ICHEP12 Melbourne 7/7/12

  4. International Linear Collider c. 250 GeV / beam 31 km P.N. Burrows ICHEP12 Melbourne 7/7/12

  5. Beam parameters ILC (500)CLIC (3 TeV) Electrons/bunch 0.750.37 10**10 Bunches/train 2820312 Train repetition rate 550 Hz Bunch separation 3080.5 ns Train length 8680.156 us Horizontal IP beam size 65545 nm Vertical IP beam size 60.9 nm Longitudinal IP beam size 30045 um Luminosity 26 10**34 P.N. Burrows ICHEP12 Melbourne 7/7/12

  6. Beam parameters ILC (500)CLIC (3 TeV) Electrons/bunch 0.750.37 10**10 Bunches/train 2820312 Train repetition rate 550 Hz Bunch separation 3080.5 ns Train length 8680.156 us Horizontal IP beam size 65545 nm Vertical IP beam size 60.9 nm Longitudinal IP beam size 30045 um Luminosity 26 10**34 P.N. Burrows ICHEP12 Melbourne 7/7/12

  7. Beam parameters ILC (500)CLIC (3 TeV) Electrons/bunch 0.750.37 10**10 Bunches/train 2820312 Train repetition rate 550 Hz Bunch separation 3080.5 ns Train length 8680.156 us Horizontal IP beam size 65545 nm Vertical IP beam size 60.9 nm Longitudinal IP beam size 30045 um Luminosity 26 10**34 P.N. Burrows ICHEP12 Melbourne 7/7/12

  8. Beam parameters ILC (500)CLIC (3 TeV) Electrons/bunch 0.750.37 10**10 Bunches/train 2820312 Train repetition rate 550 Hz Bunch separation 3080.5 ns Train length 8680.156 us Horizontal IP beam size 65545 nm Vertical IP beam size 60.9 nm Longitudinal IP beam size 30045 um Luminosity 26 10**34 P.N. Burrows ICHEP12 Melbourne 7/7/12

  9. IP beam feedback concept • Last line of defence against relative beam misalignment • Measure vertical position of outgoing beam and hence beam-beam kick angle • Use fast amplifier and kicker to correct vertical position of beam incoming to IR FONT – Feedback On Nanosecond Timescales P.N. Burrows ICHEP12 Melbourne 7/7/12

  10. Beam parameters ILC (500)CLIC (3 TeV) Electrons/bunch 0.750.37 10**10 Bunches/train 2820312 Train repetition rate 550 Hz Bunch separation 3080.5 ns Train length 8680.156 us Horizontal IP beam size 65545 nm Vertical IP beam size 60.9 nm Longitudinal IP beam size 30045 um Luminosity 26 10**34 P.N. Burrows ICHEP12 Melbourne 7/7/12

  11. General considerations Time structure of bunch train: ILC (500 GeV): c. 3000 bunches w. c. 300 ns separation CLIC (3 TeV): c. 300 bunches w. c. 0.5 ns separation Feedback latency: ILC: O(100ns) latency budget allows digital approach CLIC: O(10ns) latency requires analogue approach Recall speed of light: c = 30 cm / ns: FB hardware should be close to IP (especially for CLIC!) Two systems, one on each side of IP, allow for redundancy P.N. Burrows ICHEP12 Melbourne 7/7/12

  12. IP FB Design Status: ILC Conceptual design documented in ILC RDR (2007): 1.IP position feedback: beam position correction up to +- 300 nm vertical at IP 2. IP angle feedback: hardware located few 100 metres upstream conceptually very similar to position FB, less critical 3. Bunch-by-bunch luminosity signal (from BEAMCAL) ‘special’ systems requiring dedicated hardware + data links More realistic engineering design in progress for TDP report (2012) P.N. Burrows ICHEP12 Melbourne 7/7/12

  13. Door Cavern wall SiD ILC IR: SiD for illustration Oriunno P.N. Burrows ICHEP12 Melbourne 7/7/12

  14. Door Cavern wall SiD ILC IR: SiD for illustration Oriunno P.N. Burrows ICHEP12 Melbourne 7/7/12

  15. Final Doublet Region (SiD) Oriunno P.N. Burrows ICHEP12 Melbourne 7/7/12

  16. Final Doublet Region (SiD) Oriunno P.N. Burrows ICHEP12 Melbourne 7/7/12

  17. Final Doublet Region (SiD) Oriunno P.N. Burrows ICHEP12 Melbourne 7/7/12

  18. Final Doublet Region (SiD) Oriunno P.N. Burrows ICHEP12 Melbourne 7/7/12

  19. IP Region (SiD)

  20. IP Region (SiD)

  21. Beamcal – QD0 Region (SiD)

  22. IP FB BPM Detail (SiD)

  23. FB prototypes: FONT at KEK/ATF Kicker BPM 1 BPM 2 BPM 3 e- Drive amplifier Analogue BPM processor Digital feedback P.N. Burrows ICHEP12 Melbourne 7/7/12

  24. ILC prototype: FONT4 at KEK/ATF Kicker BPM 1 BPM 2 BPM 3 e- Drive amplifier Analogue BPM processor Digital feedback P.N. Burrows ICHEP12 Melbourne 7/7/12

  25. ILC prototype: FONT4 at KEK/ATF Kicker BPM 1 BPM 2 BPM 3 e- Drive amplifier Analogue BPM processor Digital feedback BPM resolution < 1um Latency ~ 130ns Drive power > 300nm @ ILC P.N. Burrows ICHEP12 Melbourne 7/7/12

  26. Latency P.N. Burrows ICHEP12 Melbourne 7/7/12

  27. ILC IP FB performance Resta Lopez P.N. Burrows ICHEP12 Melbourne 7/7/12

  28. IP FB Design Status: CLIC Conceptual design developed and documented in CLIC CDR (2011) NB primary method for control of beam collision overlap is via vibration isolation of the FF magnets, and dynamic correction of residual component motions IP position feedback: beam position correction up to +- 50 nm vertical at IP More realistic engineering design can be developed in next project phase P.N. Burrows ICHEP12 Melbourne 7/7/12

  29. CLIC Final Doublet Region Elsner P.N. Burrows ICHEP12 Melbourne 7/7/12

  30. CLIC Final Doublet Region Elsner P.N. Burrows ICHEP12 Melbourne 7/7/12

  31. CLIC Final Doublet Region Elsner P.N. Burrows ICHEP12 Melbourne 7/7/12

  32. CLIC prototype: FONT3 at KEK/ATF Kicker BPM 1 BPM 2 BPM 3 e- Analogue BPM processor P.N. Burrows ICHEP12 Melbourne 7/7/12

  33. CLIC prototype: FONT3 at KEK/ATF Kicker BPM 1 BPM 2 BPM 3 e- Analogue BPM processor Electronics latency ~ 13ns Drive power > 50nm @ CLIC P.N. Burrows ICHEP12 Melbourne 7/7/12

  34. CLIC IP FB performance Single random seed of GM C Resta Lopez P.N. Burrows ICHEP12 Melbourne 7/7/12

  35. CLIC IP FB performance For noisy sites:  factor 2 - 3 improvement P.N. Burrows ICHEP12 Melbourne 7/7/12

  36. Outstanding Technical Issues • Component designs optimised for tight spatial environment • Routing of cables • Operation of (ferrite) devices in large, spatially-varying B-field • Further studies of radiation environment • Electronics location, rad hardness, shielding • RF interference: beam  FB electronics • kicker  detector P.N. Burrows ICHEP12 Melbourne 7/7/12

  37. Summary • Well developed IP collision FB system designs for both ILC and CLIC • Simulations demonstrate luminosity recovery capability • Demonstrated prototypes with required performance parameters • Progress on designing customised beamline components (ILC) P.N. Burrows ICHEP12 Melbourne 7/7/12

More Related