1 / 51

The energy issue and the possible contribution of various nuclear energy production scenarios part II

The energy issue and the possible contribution of various nuclear energy production scenarios part II . H.Nifenecker Scientific consultant LPSC/CNRS Chairman of « Sauvons le Climat ». IPCC projections. 2030 tCO2<50$/ton Renewables: 35% electricity Nuclear: 18% electricity.

joyceta
Télécharger la présentation

The energy issue and the possible contribution of various nuclear energy production scenarios part II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The energy issue and the possible contribution of various nuclear energy production scenariospart II H.Nifenecker Scientific consultant LPSC/CNRS Chairman of « Sauvons le Climat »

  2. IPCC projections 2030 tCO2<50$/ton Renewables: 35% electricity Nuclear: 18% electricity

  3. IEA’s successive Prospects fo Nuclear (World Energy Outlook) 2020 2030 Mtoe TWh % Mtoe TWh % WEO 1998 604 2317 8 WEO 2000 617 2369 9 WEO 2002 719 2758 11 703 2697 9 WEO 2004 776 2975 12 764 2929 9 WEO 2006 861 3304 10 Alt. 2006 1070 4106 14

  4. Prospect for nuclear production 2000-2030 TWh (AIEA July 2006) 1400 1200 1000 2000 2010 b 800 2010 H 2020 b 600 2020 H 2030 b 2030 H 400 200 0 Am L Eur E MO+As S Ext. O Am N W Eur Afr Pacif

  5. Nuclear Intensive Scenarios • Scenarios by difference: • P.A.Bauquis • D.Heuer and E.Merle • Objective oriented Scenarios • H.Nifenecker et al.

  6. No miracle from renewables • Hydro: • Limitation of ressource (Europe-USA) • Environment and localization (Am.Sud, Asie, Afrique, Russie) • Large Investments • Reliable, available • Might provide 20% of world electricity. France: 70TWh/450 • Wind • « fatal » Energy • Limit: 10-15% of electricity production

  7. No miracle with renewables • Solar • PV: Ideal for isolated sites (Africa, SE Asia). Mostly artificial in Developed Countries and very expansive • Thermal: interesting for heating and warm water • Thermodynamic: Fiability? Hot and dry climates Hot and dry climate. • Biomass • Bio-fuels (10 Mtep/50) • Wood energy. • Competition with food, energy and environmental balance

  8. Pierre René Bauquis

  9. Renewable energies

  10. Renewable electricity

  11. A vision of energy mix by 2050

  12. Energy mix in 2050

  13. CO2 emissions

  14. Nuclear production In Bauquis Scenario Nuclear production 0.6 Gtep 4 Gtep i.e. x 6.5

  15. Elsa Merle and Daniel Heuer Hypothesis 2050 • Stabilization of fossile contribution • World energy consumption x 2 • Renewable = nuclear • Multiplication by factor 8 • Then increase by 1.2%/year up to 2100 Nuclear :

  16. Objective oriented scenariosH.Nifenecker et al.

  17. 2000 IIASA-WEC Scenarios • A: strong growth • A1: Oil • A2: Coal • A3:Gaz • B: Middle of the road • C: Low energy intensity. High electricity • C1: Ren.+Gaz • C2: Ren.+Nuclear

  18. GDP/cap

  19. Energy intensities

  20. World GDP B2: 110 000

  21. Primary energy per fuel

  22. Exhaustion of fossile reserves Exhaustion of fossile reserves (Gtoe)

  23. 2030-2050 2030 • Minimize use of fossils forElectricity • « Reasonable » Development of Nuclear • OECD: 85% • Transition:50% • China, India, Latin America:30% 3000 GWe Nuclear 2050 • Minimize use of coal and gas • 30% coal China, India; 30% gas Russia; 100% Africa • 7500 GWe Nucléaire

  24. Scenario no coal no gaz in 2050 B2=18000, Nuclear=1450

  25. CO2/GDP

  26. CO2/primen

  27. Gestion of Natural Uranium Reserves

  28. Unat exhaustion

  29. Breeding Cycles

  30. U-Pu vs Th-U U-Pu versus Th-U cycles • U-Pu • Fast Spectra • Pu fuel • 1.2 GWe reactors • Solid fuels • 1 year cooling • 25 years doubling time • Th-U • Thermal Spectra • Pu, then 233U fuel • 1 GWe reactors • Molten Salts fuel • 10 days fuel cycling • 25 years doubling time

  31. Nb GWe

  32. Pu inventory

  33. Nb GWe Th-U

  34. U3 inventory

  35. Trajectory

  36. Stabilisation T • Stabilization of CO2 concentration to 450 ppm • Stabilization of temperature

  37. E.Merle, D.HeuerAlternative3 components

  38. Reactor types

  39. 3 components • 233U production: • 450 PWR and 300 FNR • Les RNR ferment le cycle U/Pu • natU consumption: • 7 million tons by 2100 • 10 times less fissile matter in fuel cycle • Minor actinides production minimized

  40. R and D needsstandard reactors • PWR reactors • Selective reprocessing: extraction of Cs, Sr and M.A. • Th-Pu MOx fuel in order to produce U233 • Candu type reactors • Use of Th-Pu and, then Th-U3 fuel • Reprocssing of Th-U3 fuel • Optimization of fuel regeneration

  41. R and D needsfast neutron reactors • Sodium cooled • Void coefficient • Core Recompaction • Th blanket • Reprocessing of Th blanket • Lead cooled reactors • Corrosion problems • Pb-Bi alloys • Molten salt cooled reactors • Chemical composition • Corrosion • Gas cooled reactors • Reprocessing of refractory fuels

  42. R and D needsmolten salt reactors • Neutron spectrum optimization • Corrosion • Fuel reprocessing

  43. Proliferation • Political or technical question?

More Related