1 / 62

Assessing and Improving Instruction Martin Kozloff 2014

Assessing and Improving Instruction Martin Kozloff 2014. Outline 1 . Maximize time for teaching. 2. Use productive grouping in differentiated instruction. 3. Prepare student for new material being taught. Make sure they are firm on the pre-skill elements and/or background knowledge.

kadeem
Télécharger la présentation

Assessing and Improving Instruction Martin Kozloff 2014

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Assessing and Improving InstructionMartin Kozloff2014

  2. Outline 1. Maximize time for teaching. 2. Use productive grouping in differentiated instruction. 3. Prepare student for new material being taught. Make sure they are firm on the pre-skill elements and/or background knowledge. 4. Prepare students for the start of each lesson and for the start of each new task in the lesson. 5. Design instruction on the basis of objectives: the performance (what students will do) and performance standards (how they will do it). 6. Prepare the lesson for delivery.

  3. 7. Lessons are a sequence of knowledge-rich tasks. Each task in a lesson has a clear instructional function. 8. Use the proper format for teaching each form of knowledge: facts, concepts, rule-relationships, routines. 9. Adequately teach and assess all phases of mastery: acquisition of new knowledge (initial instruction) fluency (accurate and quick), generalization (application to new examples), integration of elements into larger wholes, retention. 10. Organize lessons around this format. Seven-point lesson plan.

  4. 11. Plan ways to scaffold instruction ; i.e., various kinds of assistance to help teachers communicate information, and to help students acquire, organize, retrieve, and apply information/knowledge. 12. Begin instruction on a new lesson with review, especially of knowledge elements and background knowledge relevant to the current instruction (pre-skills). 13. Next in a lesson, frame the main business of the lesson by stating the kind of new knowledge to be taught, the objectives (final performance and standards), and big ideas. 14. Next in a lesson, model or present new information clearly and focus on the objectives.

  5. 15. If students are not likely to learn from the model alone, lead students through the application of the new information just modeled. 16. Use pre-corrections, or reminders, to prevent errors when it is students’ turn to respond.   17. After the model (and if used, the lead), give an immediate acquisition test/check to determine whether students learned the new information. 18. Correct all errors and/or firm weak knowledge after the lead and/or test/check.

  6. 19. If new material is a concept (e.g., mitosis), rule-relationship (e.g., how price varies with demand), or cognitive routine (e.g., a math algorithm), make sure to: (a) use a wide and varied range of examples; (b) juxtapose examples to reveal sameness; (c) juxtapose examples and nonexamples to reveal difference; (d) when teaching routines (sequences of steps), use a sequence of formats, from more to less teacher-modeled. 20. Give a delayed acquisition test/check to determine whether students learned the concept, rule relationship, or cognitive routine from the set of the examples and nonexamples. 21. Teach at a brisk pace, with enthusiasm. 22. End the lesson by reviewing the lesson (e.g., main things taught) and state how what was taught is relevant to next lessons. Use frequent (every 5 to 10 lessons) curriculum-based progress monitoring assessments. Now let’s look at each item in more detail.

  7. CurriculumLessons/ 1……….10……………….35…………………..50…………………………90days Unit 1 Unit 2 Unit 3 Unit 4 Lesson Task 1. Review and firm. Sequence of sentences. Task 2 New: facts, concepts, rules, routines. Task 3 More Task 4 Work on fluency and/or generalization Task 5 Review, firm, reteach Of course, instruction occurs within a curriculum. Here are the main units. Note: there are objectives---performances and standards---for the whole curriculum, for each unit, for each lesson, and for each task in a lesson.

  8. 1. Maximize time for teaching. a. Have necessary materials readily available and at hand. b. Control noninstruction activities---announcements and other interruptions. c. Use routines for distributing and collecting materials. Teach how; practice; do “sprints.”

  9. 2.Use productive grouping in differentiated instruction. a. Give pre-tests or placement tests (of what is taught throughout a curriculum) to place students in groups with other students at the same level or spot in a curriculum---homogeneous grouping. b. Keep the groups small—say six to eight students. c. Move students to different groups based on progress monitoring information. d. Have lower performers seated close to you, and separate students with problematic behaviors.

  10. Prepare student for new material being taught. Make sure they are firm on the pre-skill elements and/or background knowledge. These knowledge elements are determined by knowledge analysis; e.g., revealing the important concepts in a science passage; the concepts and rules needed to do each step in a math routine. Teach elements (pre-skills) early, and review/firm them continually before they are integrated into larger routines that USE the elements.

  11. 4. Prepare students for the start of each lesson and for the start of each new task in the lesson. a. Teach and practice having students get ready for learning. “Show me ready.” b. Get into lessons quickly, and give encouragement. “Okay, we’re ready to learn. Here we go. Remember, when you try hard, you get it! c. Reinforce attentive, effortful behavior. “I love the way John is listening to Jerry read.” d. Re-establish attention and participation immediately. “I need to see everyone sitting ready.” “I need to hear EVERYbody!..... That’s it. NOW we have everybody!” ”My turn!”

  12. Design instruction on the basis of objectivesa. What students will DO---not what they will know, appreciate, understand, or demonstrate), and b. HOW they will do it---performance standards such as accuracy, completeness, and speed). Focus communication precisely on objectives.

  13. 6. Prepare the lesson for delivery.a. Script portions that must be logically faultless, such as wording and examples in definitions, steps in routines (such as math and reading). b. Prepare places in your presentation for test/checks of student acquisition. c. Anticipate specific errors or difficult tasks, and prepare to repeat models and the lead (“with me”); use pre-corrections (reminders) and information checks. For example, “They are not yet firm with these definitions; so I’ll review them first.”“Remind students of the rule on renaming.”“Ask students to repeat an instruction.”

  14. 7. Lessons are a sequence of knowledge-rich tasks. Each task in a lesson has a clear instructional function. Teach something new (facts, concepts, rules, cognitive routines). [acquisition]“New vocabulary word. Republic.” “Here are the steps in the routine for calculating slope and intercept.” b. Summarize. “The 9 events leading to the War of Independence are…” c. Build fluency. “You can do these problems in 1 minute. The error limit is two. GO!” d. Review and probe/test (retention). “Let’s review our concepts.”

  15. More instructional functions… e. Expand---add more to existing facts, examples, concepts. f. Generalize knowledge to new examples. “Here are new examples of linear functions. Calculate slope and intercept with the same routine as with earlier examples.” g. Strategically integrate---combine information into a larger whole, such as an explanatory essay, or a research project, or a math routine. For example… Teach what a linear function is. + >> Define data points as coordinates on X/Y axes. + >> Graph data points. + >> Explain the straight lines as examples of linear functions. +>> Show that all sections of a line (function) are the same in the ratio of change in Y over change in X. +>> Model, lead, test the sequence of steps in the routine for calculating the slope.

  16. 8. Use the proper format for teaching each form of knowledge. a. Facts. Declarative statements (subject  predicate) about a particular, individual subject. Examples.The first ten amendments are called “The Bill of Rights.” Boston is the capital of Massachusetts.

  17. Format for teaching facts. (1) State the fact (model). [Students write it down in guided notes? Students say it to themselves?] (2) Then have students say the fact with you (lead). [If needed.](3) Then have students state the fact by themselves. [test/check]

  18. b. Sensory concepts. One example shows all of the defining features. Examples: red, straight line, on top. Format for teaching sensory concepts. (1) Present/model a range of examples that differ in size, shape, etc., but are the same in the defining feature (e.g., color)—to allow comparison, to identify sameness. “This (ball) is red… This (cube) is red…. This (spoon) is red…. This (bird) is red.”

  19. Format for teaching sensory concepts, continued. (2) Juxtapose examples and nonexamples that are the same except for the defining feature---to show contrast, to identify difference that makes the difference. “This (ball) is red. This (ball) is NOT red.” (3) Test with all examples and nonexamples (delayed acquisition test). “Is this red?...Is this red?” (4) Test with new examples (generalization test).

  20. c. Higher-order (abstract) concepts.Defining features of the class are spread out, and can’t be sensed all at once as can colors and shapes. Examples. Society, mammal, granite, representative democracy, cell mitosis, table, galaxy. Format for teaching higher-order concepts. (1) Teach the verbal definition: using model, lead, test/check. “Mitosis is the process of cell division in eukaryotic cells (this has to be defined FIRST) that consists of six phases--- interphase, prophase, prometaphase anaphase, telophase, cytokynesis.

  21. Format for teaching higher-order concepts, continued. (2) Then present examples that show each phase with different cells, so that students can see the samenessin the essential features. “This is metaphase. Notice it has (these features). And THIS is metaphase. Notice that it also has (these features)…” (3) Then juxtapose examples and nonexamples that are similar, but that differ in the essential (defining) feature of each phase. “This is metaphase. Notice these both have…. This is NOT metaphase. Notice that the one called ‘metaphase has.... But the once called ‘not metaphase one does NOT have… So THAT feature is the difference between metaphase and not metaphase.”

  22. Format for teaching higher-order concepts, continued. 4) Then test all examples and nonexamples used (delayed acquisition test). “Is this…?”….“How do you know?” (5) Then present new examples and nonexamples and show student the features that make them examples and nonexamples. Then test. “Is this anaphase?... How do you know?” [Students state the features that define the concept—anaphase.] (Generalization)

  23. d. Rules. Statements that connect NOT one thing and another thing (e.g., name and date = fact), but connect whole sets of things (concepts). Examples: When (whenever, if, the more) demand (a whole class of examples) increases, (then, the more/the less) price (a whole class of examples) increases. All/some/no (examples in the class of) dogs/cats/fish are (members of the larger class of) canines/tigers/have wheels. Rule relationships be shown on diagrams; e.g., graphs and models of interconnections.

  24. Format for teaching rules. Teach rules one of two ways. a. Deductive method---from general (rule) to specific (examples). Examples reveal rule. (1) Teach the rule statement (model, lead, test) first. (2) Then present examples and nonexamples---as with concepts. Verbal and visual models. (3) Then test all examples and nonexamples. “Is this (verbal description or graph) an example of the demand-price rule?” “No.” “How do you know?” Students state rule. (4) Then generalize to/test new examples and nonexamples.

  25. Format for teaching rules, continued. b. Inductive method---from specific (examples) to general (rule). Students infer (figure out) rule from examples. More complex than the deductive method. (1) Present a range of examples first (e.g., different price-demand curves): cars, oil, gold. (2) Show students how to compare the examples and to identify the sameness—the relationship; e.g., one variable goes up and the other variable goes up. “Demand varies directly with price.” (3) Then present nonexamples, and show (in relation to the rule) how they are nonexamples. “Demand is increasing, but price stays the same. That does NOT fit the rule.” (4) Then test all examples and nonexamples. “Is this one an example of the rule?... How do you know?” [Acquisition test.] (5) Then give new examples and nonexamples, and have students say if they are or are not examples, and how they know. [Generalization test.]

  26. d. Routines. A sequence of steps for getting something done.Examples: Solving math problems, sounding out words, writing essays, brushing teeth. Format for teaching routines. (1) Model, lead, test each step (or a few steps). (2) Add a few more steps and then do the whole sequence so far (model, lead, test); (3) Add a few more, until students are doing the whole sequence. Use a series of formats in which teacher first models all the steps and students watch (or do one step); repeat until students’ part is firm. Then the teacher models fewer steps and the students do the rest, repeating until firm. Repeat until students do the whole routine.

  27. Adequately teach and assess all phases of mastery: acquisition of new knowledge (initial instruction) fluency (accurate and quick), generalization (application to new examples), integration of elements into larger wholes, retention. Generalization Acquisition Integration Retention Fluency For each phase, there are stated objectives, instructional procedures, assessment of progress, and suggested remediation (if there is too little progress) based on assessment data. Here’s more. 

  28. Acquisition phase.General procedure. (1) Gain attention. “Eyes on me.” (2) Frame instruction. “Now you’ll learn to…” State: (a) Performance (e.g., which problems); and (b) Standards (accuracy, speed, completeness). (3) Model (‘My turn.”), lead (“Do it with me.”), test/check (“Your turn,”) the first example in the acquisition set; e.g., the routine for solving a kind of math problem. (4) Verify correct responses; correct all errors (model, lead, test, start over, retest), firm weak parts (e.g., a step in a routine), or even reteach. Even more 

  29. Acquisition phase, continued (5) Model, lead, test/check the next examples in the acquisition set. (6) Test/check all examples---delayed acquisition test. “Your turn to do ALL our problems.” (7) Verify correct responses; correct all errors (model, lead, test, start over, retest), firm weak parts (e.g., a step in a routine), or even reteach. (8) Test/teach generalization to new examples. “These are new examples, but you can (sound them out; solve them with the routine). I’ll show you how (model)… Now your turn… (9) Verify correct responses; correct all errors (model, lead, test, start over, retest), firm weak parts (e.g., a step in a routine), or even reteach.

  30. b. Building fluency---accuracy plus speed. (1) Model fluency. “I’ll show you how to read sentences fast.” (2) Teach component skills (knowledge elements) to fluency, from the smallest to the largest units. For instance,Answering comprehension questions about sentences, then paragraphs, then sections, then whole documents fast. How do you know what are the component skills (knowledge elements) of a more complex performance? Answer: knowledge analysis. “What kinds of fluency are involved in fluent reading (with comprehension) of a whole passage?” Answer---from smaller to larger elements of fluency: Answering questions about sentences, then paragraphs, then sections, then whole documents fast. Apply this fluency-building principle to any math routine.

  31. Building fluency, continued. (3) Use pacing devices. Clapping, metronome. (4) Repetition. “Let’s read it again the fast way. Error limit is two.” (5) Speed drills, one minute timings. Graph towards fluency objective.

  32. c. Generalization of knowledge to new examples. (1) Use a generalization set---examples that differ in nonessential ways from the acquisition set (e.g., different numbers), but are the same in essential ways (e.g., how you treat them) as examples of the same KIND of problem. (2) Model for students how to see that new examples are the same (in how you treat them) as the ones in the acquisition set. Show essential features. (3) Work on new examples one at a time: model, lead, test. (4) Gradually, fade out the model and lead until students are independent working with the new examples.

  33. d. Strategically integrate part skills (basics) into larger wholes; e.g., use knowledge of historical periods, biography, rhyme, figures of speech, and symbolism to perform a routine---analyze poems. (1) Analyze a whole into its knowledge elements; analyze each element into smaller elements. (2) Think of a logical sequence of instruction for integrating the elements. a. One way. Big idea; then details that reveal or support the big idea.For instance, it makes more sense, logically, to show students how to find the big idea expressed by a poem, than to identify figures of speech in poems. The Second Coming [excerpt. W.B. Yeats, 1919] Turning and turning in the widening gyre [circles]The falcon cannot hear the falconer; [Humanity is disconnected from God.]Things fall apart; the centre cannot hold; [What happens then.]Mere anarchy is loosed upon the world,The blood-dimmed tide is loosed, and everywhereThe ceremony of innocence is drowned;The best lack all conviction, while the worstAre full of passionate intensity. More on strategic integration 

  34. Strategic integration, continued. Another way. Teach less-complex knowledge elements and gradually integrate them. For instance, firm up multiplication and subtraction; then teach estimation (56 divided by 12 is….); then integrate these in the routine (set of steps) for long division. As you firm up earlier taught elements and teach a new one, integrate these into a whole routine---sequence of steps. Do this step by step (add steps) and explicitly, with: Model. Teacher alone. Lead. Student and teacher together. Test. Student alone. Verification and error correction—repeat until firm More 

  35. Building a routine by integrating elements into a sequence of steps is best done over a series of lessons. Watch as new elements/steps are added to the routine sequence. Lesson 1. say sounds (mmm, ahhh, sss) +  read letter-sounds (m, a, s).Lesssons2 and 3. say sounds +  read letter-sounds + use letter-sounds to sound out words (am  aaammm, ma  mmmaaaa, sam ssssaaammm) Lessons 4-8. say sounds +  read letter-sounds + use letter-sounds to sound out words +  say words fast (sam!) +  read words fast (sam  sssaaammm  sam!). Even more 

  36. Strategic integration, continued. Teach routines using a sequence of formats that move from more to less teacher modeled. Watch. First integrating format. Teacher models steps in a math algorithm (and explains what she’s doing); students write numerals and signs. Second integrating format. Teacher tells students to do all the steps she modeled; tells students what they steps are; has students say what they will do---until firm; students do the steps. Third integrating format. Teacher has students say what they will do---until firm; students do the routine. Last integrating format. Students do the routine and explain each step.

  37. e. Retention. (1) Cumulative review after a series of lessons. Most examples from the last lesson plus most of the second to last lesson, plus some of previous lessons. (2) Also review at the start, middle, and end of lessons. Always include items on which students were not firm. Reteach as needed. Use retention information (e.g., which students miss which items) to improve teaching in general (e.g., use more examples during acquisition; review and firm more often) and to individualize (e.g., special sessions of intensive instruction).

  38. 10. Organize lessons around this format. Seven-point lesson plan. a. Objectives.State what students will do; the forms of knowledge worked on; the phases of learning worked on (acquisition, fluency, generalization, retention.); how learning will bemeasured/tested/applied. b. Standards.State type of lesson (lecture, cooperative, mixed); procedures to be followed; expectations/challenge for success. c. Anticipatory set (to focus attention and provide an organizing framework). Present big ideas (possibly advance organizer in the form of diagram). Review.

  39. d. Teaching presentation. Some variation of gain attention, frame, model, lead, test/check, verification (to communicate new fact, list, concept, rule relationship, or routine), followed by questioning that expands on the new information. E.g., after asking comprehensions questions that are tied directly to the text just read (who said/did what, etc.?) ask for other examples students might know. e. Guided practice. Application: worksheets, write poem, solve more math problems, do experiment—but circulate and supervise. f. Closure. Review. Delayed acquisition test/check. Correct errors, form weak parts, reteach as needed. Plan to review at the start of next lesson. g. Independent work.Not every lesson. E.g., speed drills, paired reading.

  40. The orderis like this. Gain attention Frame instruction Model New Information. “My turn.” Lead students through the information. “Do it with me.” Give an immediate acquisition test/check. “Your turn.” Verify correct responses, or correct errors, or firm up a weak part, or reteach. Model-lead-test more examples (in a concept or rule) or steps (in a routine). Verify correct responses, or correct errors, or firm up a weak part, or reteach. Test all examples---delayed acquisition test. Verify correct responses, or correct errors, or firm up a weak part, or reteach. Review, firm up weak parts, reteach as needed.

  41. 11. Plan ways to scaffold instruction; i.e., various kinds of assistance to help teachers communicate information, and to help students acquire, organize, retrieve, and apply information/knowledge. Examples are stated objectives, highlighting, reminders and hints, wait time, big ideas, advance organizers (lesson and unit outlines, guided notes, concept/proposition maps, lists of steps to follow in routines), summaries, diagrams, glossaries.

  42. 12.Begin instruction on a new lesson with review, especially of knowledge elements and background knowledge relevant to the current instruction (pre-skills). The teacher… a. Corrects errors. “12 goes into 22 ONE time. How many times does 12 go into 22? b. Firms weak part-knowledge. “Let’s practice drawing best-fit lines as part of finding the slope of a line.” c. Reteaches as needed. “Okay, let’s start over, with step 1.” …before introducing new material that requires this background knowledge.

  43. 13. Next in a lesson, frame the main business of the lesson by stating the kind of new knowledge to be taught, the objectives (final performance and standards), and big ideas that will help students organize, remember or access, and comprehend the new knowledge, and connect new with prior knowledge. a. Objectives should state what students will do---the final performance.They should not speak of know, appreciate, demonstrate, or understand. b. Objectives should state performance standards---the desired accuracy, rate,and completeness. For example, how many concepts per minute will be correctly identified from examples. Or, “I’ll say a word slowly; then you’ll say that word fast.”

  44. 14. Next in a lesson, model or present new information clearly and focus on the objectives. The teacher: a. Shares his or her thought processes. “First I…. Then I…” (explicit instruction) b. Uses clear wording. Uses consistent wording. c. Repeats the information as needed. d. Presents one step or item at a time in a list or routine, depending on how many steps or items students can handle. Wording. Should be simple declarative statements (“This is…”; “We will…”); consistent wording in the same task and when teaching the same kind of knowledge (“New concept.”); focused on objective.

  45. Examples of concepts, rules, and routines: Clearly show relevant features. Cover a varied range. Are juxtaposed to show sameness across examples and difference between examples and nonexamples Are presented with frequent and regular examples first; e.g., teach m, s, a, before x and ing; teach regular words (sad) before irregular worlds (said). The teacher repeats the model as needed. “Watch me again,….”

  46. 15. If students are not likely to learn from the model alone, lead students through the application of the new information just modeled. Sometimes called “guided practice.” The lead is not always needed, but is it best to err on the side of caution. “Now we’ll work that problem together.” Repeat until students are firm.

  47. 16. Use pre-corrections, or reminders, to prevent errors when it is students’ turn to respond.   “Remember, F…O…I…L. Multiply the First numerals; then the Outside numbers; then the Inside numbers; then the Last numbers. You tell me which numbers we do first… Which ones we do outside…. Which ones we do inside…..; which ones we do last….”

  48. Prevent errors, continued. Also, check students’ preparation to take their turn. Do they remember what to do? “We always multiply numbers in the ones column first. What numbers do we multiply first?.... What numbers are in the ones column?... So what numbers are we going to multiply first?”

  49. 17. After the model (and if used, the lead), give an immediate acquisition test/check to determine whether students learned the new information. Test/check every time new information is presented to be sure that students learned it. This is especially important when teaching diverse learners, essential material, and difficult material. “Your turn to define our new concepts.” Ask the question first or gives an instruction, before calling on the group or an individual. b. After calling on the group for a choral response, call on individual students, and make sure to call on students who have made errors or who in general have a harder time learning. “Now for individual turns.”

  50. c. Give think time (quick count of 3) before calling on the group or an individual. “Get ready….. Go.” d. Use a signal to tell students to start; e.g., for example, tapping the book; saying “Go.” e. Immediately verify correct responses. “Yes, you read those words the fast way.” Repeat until students are firm.

More Related