1 / 49

Rh-Catalyzed Asymmetric Additions: The Rise of Chiral Dienes

Rh-Catalyzed Asymmetric Additions: The Rise of Chiral Dienes. Tamio Hayashi. Erick Carreira. Daniela Sustac February 16, 2010. Outline. Transition Metal – Olefin Complexes. Alkenes not very basic, backbonding necessary to stabilize M-olefin bond;

kaylee
Télécharger la présentation

Rh-Catalyzed Asymmetric Additions: The Rise of Chiral Dienes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Rh-Catalyzed Asymmetric Additions: The Rise of Chiral Dienes Tamio Hayashi Erick Carreira Daniela Sustac February 16, 2010

  2. Outline

  3. Transition Metal – Olefin Complexes • Alkenes not very basic, backbonding necessary to stabilize M-olefin bond; • Olefins considered labile, easily displaced from M center. Crabtree, H.R. The Organometallic Chemistry of Transition Metals. Wiley: New Jersey, 2005.

  4. Transition Metal – Strained Alkene Complexes • Strained alkenes (cyclopropene, norbornene) bind very strongly to metals; • Rehybridization on binding relieves ring strain. Crabtree, H.R. The Organometallic Chemistry of Transition Metals. Wiley: New Jersey, 2005.

  5. Examples of Olefins in Complexes and Catalysis • Prepared by Zeise in 1827; • Structure elucidated in the 1950’s; • Norbornene in the Catellani reaction: “a sort of scaffold to be removed after the building of the molecule is complete; behaves as catalyst, excess necessary to push the reaction” Wunderlich, A.J.; Mellor, D.P. Acta Crystallogr. 1955, 8, 57. Catellani, M; Frignani, F.; Rangoni, A. Angew. Chem. Int. Ed. 2007, 36, 119.

  6. Who Binds the Strongest? • Electron deficient alkenes bind tighter; • Stronger binding with strained alkenes. Tolman, A.C. Organometallics 1983, 2, 614.

  7. Rh-Catalyzed 1,4-Addition (before chiral dienes) Consequently, the reaction can be done using directly [Rh(OH)(S-binap)]2 at 35 ºC. Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 2002, 124, 5052.

  8. Chiral Dienes: First Contact Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508. Hydrosylilation: Uozumi, Y.; Lee, S.-Y.; Hayashi, T. Tetrahedron Lett. 1992, 33, 7185.

  9. The (Only) One with A Lot of Scope Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508.

  10. Explaining Stereochemistry Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508.

  11. Chiral Dienes: First Contact • Advantages • Highest catalytic activity of all rhodium catalysts used for 1,4-addition; • Among the highest enantioselectivities (most over 90% ee); • Disadvantages • Long synthesis of chiral diene; • Bistriflate intermediate hard to isolate. Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508.

  12. New Route to Chiral Dienes Berthon-Gelloz, G.; Hayashi, T. J. Org. Chem. 2006, 71, 8957. Vandyck, K.; Matthys, B.; Willen, M.; Robeyns, K.; Van Meervelt, L.; Van der Eycken, J. Org. Lett. 2006, 8, 363.

  13. One Unstable Chiral Diene, One Stable Rh Complex Berthon-Gelloz, G.; Hayashi, T. J. Org. Chem. 2006, 71, 8957.

  14. One More Carbon • Optical resolution by recrystallization inefficient route; • Alternatively, can do racemic synthesis and separate by chiral HPLC, either intermediate or final product. Otomaru, Y.; Okamoto, K.; Shintani, R.; Hayashi, T. J. Org. Chem. 2005, 70, 2503.

  15. To Be Stable or Not to Be Stable

  16. The One with iMean Arylation Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584.

  17. Stereochemistry is Explained Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584.

  18. The One with (a Bit) of Scope Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584.

  19. The One where They Do It Better? Nishimura, T; Yasuhara, Y.; Hayashi, T. Org. Lett. 2006, 8, 979. Boezio, A.A; Pytkowicz, J.; Cote, A.; Charette, A.B. J. Am. Chem. Soc. 2003, 125, 14260.

  20. The One with the iMean Mechanism Nishimura, T; Yasuhara, Y.; Hayashi, T. Org. Lett. 2006, 8, 979.

  21. More Stereochemistry Explained Nishimura, T; Yasuhara, Y.; Hayashi, T. Org. Lett. 2006, 8, 979.

  22. Is Nine the Lucky Number? Otomaru, Y.; Tokunaga, N.; Shintani, R.; Hayashi, T. Org. Lett. 2005, 7, 307.

  23. The One with the Deprotection By far the mildest approach! Boezio, A.A; Pytkowicz, J.; Cote, A.; Charette, A.B. J. Am. Chem. Soc. 2003, 125, 14260. Nishimura, T; Yasuhara, Y.; Hayashi, T. Org. Lett. 2006, 8, 979. Otomaru, Y.; Tokunaga, N.; Shintani, R.; Hayashi, T. Org. Lett. 2005, 7, 307.

  24. The One with the Cyclization of Alkynals *[Rh(OH)(cod)]2 used directly Shintani, R.; Okamoto, K.; Otomaru, Y; Ueyama, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 54.

  25. The One with the Mechanism Shintani, R.; Okamoto, K.; Otomaru, Y; Ueyama, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 54.

  26. The One with the Cyclization of Alkynals *Et instead of Me. Shintani, R.; Okamoto, K.; Otomaru, Y; Ueyama, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 54.

  27. Let’s Do Some Cycloadditions Shintani, R.; Sannohe, Y.; Tsuji, T.; Hayashi, T. Angew. Chem. Int. Ed. 2007, 46, 7277.

  28. [4+2] Shintani, R.; Sannohe, Y.; Tsuji, T.; Hayashi, T. Angew. Chem. Int. Ed. 2007, 46, 7277.

  29. Cycloaddition Mechanism Shintani, R.; Sannohe, Y.; Tsuji, T.; Hayashi, T. Angew. Chem. Int. Ed. 2007, 46, 7277.

  30. Stereochemistry Explained Shintani, R.; Sannohe, Y.; Tsuji, T.; Hayashi, T. Angew. Chem. Int. Ed. 2007, 46, 7277.

  31. 1,6-Enynes Cycloisomerization Nishimura, T.; Kawamoto, T.; Nagaosa, M.; Kumamoto, H.; Hayashi, T. Angew. Chem. Int. Ed. 2010, 49, In Press.

  32. Tfb (tetrafluorobenzobarrelene) Diene Synthesis • Chiral HPLC to separate enantiomers; • Low yielding steps. Nishimura, T.; Kumamoto, H.; Nagaosa, M.; Hayashi, T. Chem. Commun. 2009, 5713.

  33. The One with the Catalyst Design A chiral diene and a phosphine on the same catalyst! Nishimura, T.; Kawamoto, T.; Nagaosa, M.; Kumamoto, H.; Hayashi, T. Angew. Chem. Int. Ed. 2010, 49, In Press.

  34. “Dig” the Mechanism Nishimura, T.; Kawamoto, T.; Nagaosa, M.; Kumamoto, H.; Hayashi, T. Angew. Chem. Int. Ed. 2010, 49, In Press.

  35. Stereochemistry Explained Nishimura, T.; Kawamoto, T.; Nagaosa, M.; Kumamoto, H.; Hayashi, T. Angew. Chem. Int. Ed. 2010, 49, In Press.

  36. More Chiral Dienes Most effective ligands reported so far for Rh-catalyzed asymmetric addition! Okamoto, K.; Hayashi, T.; Rawal, H.V. Org. Lett. 2008, 10, 4387.

  37. Last Stereochemistry Picture Okamoto, K.; Hayashi, T.; Rawal, H.V. Org. Lett. 2008, 10, 4387.

  38. Hayashi’s Dienes: Summary

  39. Ir-Catalyzed Allylic Displacement Potential for the diene to be synthesized asymmetrically from cheap (R) or (S)-carvone. Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E.M. J. Am. Chem. Soc. 2004, 126, 1628.

  40. Spin-Off: Carreira’s Diene Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E.M. J. Am. Chem. Soc. 2004, 126, 1628.

  41. Carreira’s Dienes Generation II“The Long Way Home” Defieber, C.; Paquin, J.-F.; Serna, S.; Carreira, E.M. Org. Lett. 2004, 6, 3873.

  42. Again with the Enones? • Additional substrates in the scope (not covered by Hayashi) Defieber, C.; Paquin, J.-F.; Serna, S.; Carreira, E.M. Org. Lett. 2004, 6, 3873.

  43. One Ligand, One Day, Two Papers

  44. The Short Way Home Carreira Darses • Ortho substituted boronic acids a challenge; • Most accessible route; • Library of 14 ligands; • High enantioselectivities (over 90%). Gendrineau, T.; Chuzel, O.; Eijsberg, H.; Genet, J.-P.; Darses, S. Angew. Chem. Int. Ed. 2008, 47, 7669. Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E.M. J. Am. Chem. Soc. 2004, 126, 1628.

  45. Enantioselective Diene Synthesis Brown, K.M.; Corey, E.J. Org. Lett. 2010, 12, 172.

  46. Order of Addition Is Important • Diene is inhibited • Less strained system necessary Brown, K.M.; Corey, E.J. Org. Lett. 2010, 12, 172.

  47. Adding One More Carbon Brown, K.M.; Corey, E.J. Org. Lett. 2010, 12, 172.

  48. Summary Reviews: Defieber, C.; Grutzmacher, H.; Carreira, E.M. Angew. Chem. Int. Ed. 2008, 47, 4482. Johnson, B.J.; Rovis, T. Angew. Chem. Int. Ed. 2008, 47, 840.

  49. A Bit of Shopping: Chiral Dienes at Aldrich

More Related